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Abstract— This paper presents a new universal approach for  
simulation of electromagnetic (EM) wave propagation in ultra-

wideband (UWB) channel focusing on statistical analysis of EM 
field distribution. We present the new approach for the case of 
diffraction on convex obstacles. We base on a circular cylinder 

model of a convex obstacle and uniform theory of diffraction 
(UTD) which can be effectively used in an asymptotic prediction 
of an EM field scattered by convex obstacles. The polynomial 

chaos expansion is used in the statistical analysis. It is derived 
using the Hermite polynomial basis. 

Index Terms— UWB propagation, polynomial chaos,  

stochastic simulation. 

I.  INTRODUCTION 

UWB technology brought a lot of attention worldwide due 

to its advantages that can be implemented in communications 

and radar area. Nowadays the usual UWB propagation channel 

concerns indoor scenarios. These channels usually exhibits the 

presence of convex obstacles e.g. human body. For the proper 

analysis of UWB propagation it is essential to include an ultra-

wideband interaction of EM wave with an obstacle. This 

interaction results in a signal distortion, which is practically 

not present in a narrow-band EM wave propagation. It is 

important to have predictive tools to obtain as accurate as 

possible field distribution in order to enable optimized 

implementation of an UWB transmission system. The 

simulators of EM wave propagation base on different models 

of propagation environment as empirical, statistical, site-

specific, theoretical, etc. In this paper we deal with theoretical 

modeling of EM wave indoor propagation focusing on convex 

obstacles which can be static, e.g. rounded pillars or non-static, 

e.g. humans. The essential advantage of physical models is 

enabling of a detailed insight into an influence of physical 

phenomena and physical parameters of a channel on an 

observed EM field. 

This paper provides the new universal approach to 

statistical analysis of a relationship between channel physical 

parameters and an EM field distribution. For the clarity of a 

presentation of the approach and space saving issues the work 

presented in this paper concentrates on analysis of a diffraction 

phenomenon on a convex obstacle modeled by a circular 2D 

cylinder. We use uniform theory of diffraction in our 

simulations. The propagation scenario of an UTD diffraction 

ray is presented in Fig. 1. Although numerical examples in the 

paper concern only a diffraction scenario our new approach 

presented in Section II can be easily adopted for e.g. reflection 

phenomenon on a convex obstacle.     

 
Fig. 1. 2D scenario of a diffraction (creeping) ray traveling along a circular 

cylinder – a) and cross-section of the cylinder – b). 

 

In practical applications it is very important to include 

stochastic properties of physical parameters of propagation 

channel elements. Different numerical methods enable to 

include a stochastic behavior of a simulation problem. Among 

them we can mention Monte Carlo method, moment equations, 

perturbation techniques, polynomial chaos, etc [1]. The main 

goal of these techniques is to deliver more reliable simulation 

results dealing with an imprecision of given channel scenario 

parameters. In our analysis we use the polynomial chaos 

technique, which is very effective and provides the results in 

much less time than the Monte Carlo method. Polynomial 

chaos expansion has been introduced to computational 

problems in electromagnetic [2]  and recently used in e.g. [3]. 

To our knowledge until now no study was focused on 

application of the polynomial chaos for an ultra-wideband 

propagation therein concerning convex obstacles. Furthermore 

the past results concerning this subject enable a direct 

derivation of a filed distribution only for one (assumed) value 

of mean and variance of simulation input parameters. If a mean 
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or a standard deviation changes then new time consuming 

numerical calculations are required.  

In this paper we present the universal approach to a 

polynomial chaos expansion where the coefficients of the 

derived expansion are the functions of a mean and a standard 

deviation of the input stochastic variables as well as the 

frequency. In order to obtain the universal expansion we apply 

the Hermite polynomial basis. We verify the exemplary 

simulation results obtained with our universal expansion by 

comparing it with the results of the Monte Carlo method. 

The paper is organized as follows. In Section II we 

introduce our universal approach to a polynomial chaos 

expansion dedicated for effective stochastic simulations of EM 

wave propagation in an UWB channel. Section III gives some 

numerical examples that verify our new approach for the case 

of a diffraction on a convex obstacle modeled by a PEC 2D 

circular cylinder. We conclude the paper in Section IV.  

II. THE UNIVERSAL POLYNOMIAL CHAOS EXPANSION 

Polynomial chaos expansion enables to express a 

considered function of stochastic variables as a spectral 

expansion of a these uncertain variables. When the stochastic 

variables have a Gaussian distribution the strong convergence 

is obtained when an orthogonal basis of the Hermite 

polynomials is used. The Hermite polynomial chaos expansion 

of a transfer function T(ωn,ξ) for a specific pulsation ωn with 

respect to input stochastic variable ξ whose mean and standard 

deviation are µ0 and σ0, respectively can be calculated 

according to the formula: 
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where coefficients of an expansion are calculated by: 
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where n is the number of a frequency sample while: 
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Hk[.] is the Hermite polynomial of the kth order. The form of 

the series (1) results from the need to ensure its faster 

convergence by suitably choosing µ0, σ0. In the scenario of a 

diffraction (creeping) ray shown in Fig. 1, we can deal with 

three stochastic variables, i.e. ξ=R,  ξ = θ and ξ=Ld = s
i
s

d
(s

i
 + 

s
d
)

-1
. After finding the expansion coefficients of function 

T(ωn,ξ), its mean and variance are defined by (4) and (5), 

respectively. 
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In order to find an ultra-wideband function of expansion 

coefficients corresponding to µ0 and σ0 the coefficients are 

calculated numerically for all the pulsation samples ωn in the 

UWB frequency domain. Then we use the vector fitting 

algorithm [4] in order to obtain the frequency dependent 

expansion coefficients in terms of rational functions [4,5]. 

Afterwards the approximated transfer function can be easily 

transformed into the time-domain by using the inverse Laplace 

transform. As a result we obtain a spectral expansion of an 

impulse response which is expressed by a sum of exponential 

functions what allows an application of an effective calculation 

of a convolution with a given UWB signal.   

The vector fitting algorithm is applied only once for each 

of the expansion coefficients. It is performed only for ξ with 

mean and standard deviation equal µ0 and σ0, respectively. In 

order to derive expansion coefficients for ξ with mean and 

standard deviation µ and σ, respectively, we proceed as 

follows.  

The goal is to find a chaotic polynomial expansion given 

by (6) using known (tabulated) expansion coefficients (2) 

which was calculated with respect to variable ξ whose mean 

and standard deviation are µ0 and σ0, respectively. 
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When we adopt (2b) for the case of ξ with mean and 

standard deviation equal µ and σ, respectively, we obtain the 

following general formula for spectral coefficients for T(ωn,ξ): 
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Then we convert (1) into the following form: 
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After  substitution of  (8) into (7) we obtain: 
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where: 
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The formula (9) takes the form (13), after we use the identity 

(12) [6]: 
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The infinite integral in (13) can be calculated analytically and 

after some transformations can be partially tabulated what 

significantly improves its calculation efficiency. The final form 

of our universal expansion coefficients is given by: 
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where Q(j,k,m) is the factor that do not depend on µ or σ 

therefore can be tabulated to increase the efficiency of our 

universal expansion coefficients. For  (j - m) = 0, 2, 4, 6 ..., we 

have: 
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while for the rest values of (j - m) factor Q(j,k,m) is 0. 

In practice the upper infinite limit in a summation occurring in 

(14) can be replaced with a natural number which can equal 

from a few to  over twenty depending on domain limits of a 

mean of ξ which are considered in a simulator (e.g. 0 ≤ θµ ≤ π, 

0.2m ≤ Rµ ≤0.3m) and the probability distribution of ξ.  

It should be noted that when more than one variable is 

assumed to be stochastic at one time [1], the analogous 

procedure as the one presented through (1) – (15) holds true. 

III. SIMULATION EXAMPLES 

In this section we compare the polynomial chaos approach 

with the standard Monte Carlo one in a calculation of a mean 

and a standard deviation of exemplary T(ωn, ξ) for a frequency 

band 1–10 GHz with respect to the stochastic behavior of 

parameter ξ. As we pointed out in the previous sections we 

present numerical examples for the case of a diffraction 

(creeping) ray transfer function [7]. We assume a stochastic 

behavior of θ while a radius of a cylinder is assumed to be 

known constant equal 0.25m. In the first example θ has a 

Gaussian distribution with a mean and a standard deviation 

equal 0.2 and 0.02, respectively. In the second case we change 

the mean and the standard deviation of θ to 1 and 0.1, 

respectively.  

 

 
Fig. 2. Mean of a real part of an UTD creeping ray transfer function with 

respect to frequency when θ has a Gaussian distribution with µ=0.2 rad and 

σ=0.02 rad. MC results shown with squares and circles correspond to a number 

of samples 10 and 100, respectively.   

 
Fig. 3. Standard deviation of a real part of an UTD creeping ray transfer 

function with respect  to frequency when θ has a Gaussian distribution  with 

µ=0.2 rad and σ=0.02 rad. MC results shown with squares and circles 

correspond to a number of samples 1000 and 10000, respectively. 

 

 
Fig. 4. Mean of a real part of an UTD creeping ray transfer function with 

respect to frequency when θ has a Gaussian distribution  with µ=1 rad and 

σ=0.1 rad. MC results shown with squares and circles correspond to a number 

of samples 1000 and 10000, respectively. 



 
Fig. 5. Standard deviation of a real part of an UTD creeping ray transfer 

function with respect  to frequency when θ has a Gaussian distribution  with 

µ=1 rad and σ=0.1 rad. MC results shown with squares and circles correspond 

to a number of samples 1000 and 10000, respectively. 

 

 We present the results in Figs. 2-5. Each figure contains 4 

graphs. The solid line corresponds to the results obtained by 

numerical calculation of (7). The dotted line relates to the 

results derived using (14). The square and circle symbol graphs 

correspond to Monte Carlo (MC) simulation results for 

different number of samples used. For space saving issues only 

real part of the functions is shown. We can see that in Figs. 2-5 

the results obtained with our universal approach are in a very 

good agreement with the results obtained using numerical 

calculation of (7) (solid lines). This numerical calculation of  

(7) was necessary for each of the two examples. In our 

universal approach we do not need to apply time consuming 

numerical calculations. The time efficiency of our approach is 

over 30 times higher than for the case of a numerical 

calculation of (7) and over 300 times higher than for the Monte 

Carlo method regarding to e.g. standard deviation results from 

Fig. 3 and Fig. 5. Although we presented the simulation 

examples for the case of one convex obstacle the method can 

be easily adopted to the case of more obstacles in an UWB 

channel [5].       

 

IV. CONCLUSIONS 

In the paper we presented the new universal approach to a 

polynomial chaos expansion for  simulation of EM wave 

propagation in an UWB channel that concentrates on statistical 

analysis of an EM field distribution. We presented and 

examined the new universal approach for the case of a 

diffraction phenomenon on a convex obstacle, which is a 

common element of an indoor propagation channel. The 

universality of our results express in a high accuracy of our 

expansion coefficients for a wide range of input stochastic 

variables without the need of performing time consuming  

numerical calculations. The coefficient are the functions of a 

mean and a standard deviation of a stochastic variable ξ. The 

coefficients (2) that are used to form the general coefficients 

(14) need to be calculated only once for each frequency sample 

of a considered UWB spectrum and then tabulated.  

Application of the vector fitting algorithm for an 

approximation of (2) in the frequency-domain allows to obtain 

a very simple form (sum of exponential functions) of an 

impulse response corresponding to a given ray [5] what allows 

an application of very effective convolution algorithms with a 

given UWB signal.  

Our new approach enables to obtain an EM field stochastic 

distribution in a very short time comparing to an application of 

the Monte Carlo method while it allows flexible settings of 

parameters of stochastic variables in a wide range. The results 

obtained using our universal approach are very accurate what 

is presented for the case of exemplary stochastic variable 

distributions in Figs. 2-5. 
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