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Abstract— In the paper, a fast and effective method of 
modeling a coupled interconnect in time domain using the 
SPICE simulator by means of S-parameters is presented. 
The model of transmission line with frequency dependent 
parameters is considered. The approach bases on the 
method of successive approximations. The rational 
approximation of the matrix of per-unit-length parameter 
of the line is done. The parameters are calculated for each 
frequency. The main advantage of the approach is the 
ability to implementation in SPICE simulator. The 
approach gives good results for low-loss interconnects. The 
results of such implementation of the scattering 
parameters are presented for the low-loss transmission 
line. 
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I. INTRODUCTION  
The time domain modeling of the VLSI interconnects are still ongoing challenge even the literature on this subject is very rich. The faster and smaller circuits make the topic still open. The parameters of the interconnects depend on the frequency and the couplings cannot be neglected. Especially the inductance influence becomes more important, and some interconnect must be considered as low-loss interconnects. Then there is a need to develop new methods to effectively take into account these problems. In the paper, we refer to two methods, which can be applied to solve the problem. The first solution [2] base on the dyadic Green’s function and vector fitting of per-unit-length impedances and admittances of the transmission line to obtain a matrix Z of n-port of the multiconductor transmission line. Every entry of matrix Z is the sum of the rational functions of a complex frequency s, which facilitates the transformation to the time-domain. There is possibility to model the circuit in SPICE but the large number of terms in every entry of the matrix Z must be taken into account. The paper [3] introduce a method of conversion of differential telegrapher’s equations into integral equations and next solve them through successive approximation. In that approach, there is obtained a simple analytical form of the first-order approximation of the solution. The method is valid for 

lowloss transmission lines. The drawback of that approach was not including the skin effect and dielectric dispersion.   In the presented approach we base on the method of successive approximations like in [3], but we take into account the line parameters' dependence on frequency. For this purpose, as in [1,2,7], we employ the concept of rational approximation of the matrix of per-unit-length line parameters calculated for each frequency. We rely on the scattering parameters of a n-wire transmission line. Such parameters for both frequency and time domains was obtained in [1]. We presented our approach for example of single interconnect in [7]. In this paper, we present the results of the implementation of the model in the SPICE simulator for coupled interconnects.   The paper is organized as follows. In section II, the 
integral equations approach to the dispersive transmission line 
are presented. In section III, the method of successive 
approximation to calculate the scattering parameters of the 
multiconductor line and display the proposed model in SPICE 
are applied. In the section IV, the  exemplary transmission line 
calculations are presented. In section V the conclusion is done. 

II.TELEGRAPHER’S EQUATIONS IN INTEGRAL FORM 
A. Telegrapher’s equations for a dispersive multiconductor 

transmission line 
Let us consider a multiconductor transmission line consisting of N conductors and a ground plane. The telegrapher’s equations are as follows: 
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 R, L, G, C – matrices of per-unit-length parameters 
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ݕ = ݖ ݀⁄ , ߬ = ݐ ܶൗ ݌   , = ܶ ,ܶݏ = ݀ඥܮଵଵ ௢ ଵଵ ௢ܥ  
d-length of the line 
݋ 11ܮ - entry of original inductance matrix 
݋ 11ܥ - entry of original capacitance matrix  

 

In (1), matrices Z1 and Y1 are the rational forms of per-unit-
length impedance and admittance of the multiconductor 
transmission line obtained [2], by means of the vector fitting 
technique [5]. In the next step the partial decoupling of the 
multiconductor transmission line is performed. It is done [3], by 
matrix transformations:  
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− ௗࢁ(୮,୷)
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మ. 
Equation (2) is partially decoupled, and matrices ିࢄଵିࡼࡸଵ  are diagonal. The current waves by matrix transformation ࢄ࡯ࡼ=
can be written as follows: 
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After some matrix manipulation a new form of the telegrapher’s 
equations can be presented: 
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In (3) the diagonal entries of matrix ۾૚ are moved to the left 
side and after some manipulations the formula (4) is obtained. 
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where ۾૚૙ᇱ = ૚૙۾ + ,૚ۿ ૛ᇱ۾ = ૛۾ +   .૛ۿ
 

B. Integral equations for a dispersive multiconductor 
transmission line 

 
 Integrating the first of equations (4) from y to 1, and the 
second from 0 to y, we obtain: 
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Equations (5) are integral telegrapher’s eqs. and can be solved 
analytically or numerically. We now calculate (5) by means of 
successive approximations method. 

III.SCATTERING PARAMETERS OF THE MULTICONDUCTOR 
TRANSMISSION LINE AND THE SPICE MODEL 

 The first order approximation, not difficult to obtain (see[3]), 
for equations (5a) has the following form [7]: ݌)ିࡵ, (ݕ =
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 Substituting y=0 in (6) we obtain the relationships: 
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 In (7), we can easily identify the scattering parameters as: 
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A. Scattering matrices in the frequency domain 
Calculation of integrals (8) is straightforward and the results are 
following 
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B. SPICE model 
For n-wire transmission line we prepared the model which 

uses the derived form of scattering parameters. The model 
is presented in Fig. 1. As we presented in Section II using 
matrices X and P we performed a partial decoupling of the 
n-wire transmission lines. The decoupled model obtained 
by this procedure is illustrated in Fig. 2. 

 
 

 
 
 
 
 
 
 
 

Fig.1 Multiconductor (n-wire) transmission line. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. SPICE model of a multiconductor transmission line, where 
݁௞,ଵ/ଶ = ∑ ௠,ଵ/ଶ,௡௠ୀଵݒ௞,௠ݔ  ݆௞,ଵ/ଶ = ∑ ௞,௠݅௠,ଵ/ଶ ௡௠ୀଵ݌ . 

 
Based on equations (10) and (9), for the partially decoupled 
transmission lines model we create a subcircuit (nT.subckt) using 
scattering parameters. Fig. 3 shows an equivalent circuit of the 
k-th transmission line (k = 1, ..., n) 
,݌)ିࡵ  0) = ,݌)ାࡵ(݌)૚ࡿ 0) + ,݌)ିࡵ(݌)૛ࡿ 1),  (10a) 

,݌)ାࡵ 1) = ,݌)ାࡵ(݌)૛ࡿ 0) + ,݌)ିࡵ(݌)૚ࡿ 1) 
 (10b) 

where 

,݌)ିࡵ 0) = ,(݌)૚࢈ ,݌)ାࡵ 1) =  ,(݌)૛࢈
,݌)ାࡵ  0) = ,(݌)૚ࢇ ,݌)ିࡵ 1) =   .(݌)૛ࢇ

 

IV.RESULTS 
As an example three wire transmission line (microstrip 

transmission line) is considered. Its crossection is shown in 
Fig.4. The per-unit-length matrices Zo, Z1, Yo and Y1 were 
calculated by means of program LINPAR [4] in seventeen 
frequency points from 10Hz to 2.1GHz. Next there was 
approximated by rational functions using vector fitting 
algorithm [5], [6] to obtain the form as in (1). The 
approximated matrices Zo, Z1, Yo, and Y1 were used next to 
calculate all parameters needed for calculation scattering 
matrices S1(p) and S2(p) in frequency domain.  

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Fig. 3. Subcircuit nT.subckt (Fig.2), k,m = 1,…,n. 
 

    
Fig.4 Microstrip data: W1=100m, W2=100m, W3=600m, h=625 

m, s1=300m, s2=280m, t=30m tg=10-4, r=4.7,  
D1= 800 m, D2=800 m, d=0.2m. 

 
The self resistances of the three transmission lines as a 
functions of frequency, calculated by means of LINPAR [4], 
are shown in Fig.5. The simulated circuit consists of voltage 
pulse sources Vs (of the trapezoid shape A = 2V, Tr= Tf = 
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500ps, Ton = 2ns) with source resistance R
transmission lines loaded as it is shown in Fig.

Fig. 5. Dependence of shunt conductance and shunt reac
line on frequency. 

 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6. Considered three wire transmission line circuit
R1=R2=R3=50, Co=1pF. 

Fig. 7. Voltages at the far ends.

Vs 

R1 

V1 

R2 V2 

R3 V3 

resistance R1=50Ω, and a 
shown in Fig.6.  

 Dependence of shunt conductance and shunt reactance of the 

Considered three wire transmission line circuit, 

 ends. 

Fig. 8. Voltages at the  
The voltages at the input and output

are shown in Figs 7-8. These figures illustrate the
distortion caused by the skin effect
dependence on frequency. 

V.CONCLUSIONS
We have shown that it is possible to generalizebased on the method of successive approximation for the case of a multiconductor transmission line with frequencydependent parameters. As a result(meaning a first-order apprparameters of the multiconductorfrequency and time domainstransmission line, the approximation gives very good resultsCompared to the approach based on function [2], the presented approach is simpler, of courseassuming sufficiently small losses of the multiconductor transmission line. The presented approach permits implementation of the model working on the implementation oftransmission line in the SPICE program
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These figures illustrate the pulse 
effect and dielectric permittivity 

ONCLUSIONS 
at it is possible to generalize an approach based on the method of successive approximation for the case multiconductor transmission line with frequency-dependent parameters. As a result, we obtain a closed form order approximation) of the scattering multiconductor transmission line both in the s. In the case of a low-loss transmission line, the approximation gives very good results. the approach based on the dyadic Green's the presented approach is simpler, of course, assuming sufficiently small losses of the multiconductor transmission line. The presented approach permits the implementation of the model in SPICE. Currently, we are ation of the model of a n-wire SPICE program. 
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