
1

INTERNATIONAL ORGANISATION FOR STANDARDISATION
ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11
CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11 MPEG2011/ M22697

November 2011, Geneva, Switzerland

Source Poznań University of Technology,

Chair of Multimedia Telecommunications and Microelectronics, Poznań, Poland
Status Contribution to the 96th MPEG Meeting
Title Technical Desciption of Poznan University of Technology proposal for Call

on 3D Video Coding Technology
Author Marek Domański (domanski@et.put.poznan.pl),

Tomasz Grajek (tgrajek@multimedia.edu.pl),
Damian Karwowski (dkarwow@multimedia.edu.pl),
Krzysztof Klimaszewski (kklima@et.put.poznan.pl),
Jacek Konieczny (jkonieczny@multimedia.edu.pl),
Maciej Kurc (mkurc@multimedia.edu.pl),
Adam Łuczak (aluczak@multimedia.edu.pl),
Robert Ratajczak (rratajczak@multimedia.edu.pl),
Jakub Siast (jstast@multimedia.edu.pl),
Olgierd Stankiewicz (ostank@multimedia.edu.pl),
Jakub Stankowski (jstankowski@multimedia.edu.pl),
Krzysztof Wegner (kwegner@multimedia.edu.pl)

2

Table of contents

1 Introduction ... 3

2 Overview ... 3

2.1 Coder overview... 3
2.2 Decoder overview ... 4

3 Algorithm Description ... 5

3.1 Texture layer separation ... 5
3.2 Unified depth representation .. 6
3.3 Base view texture layer coding - HEVC-compatible codec ... 7

3.4 Camera parameters coding ... 7
3.5 Depth coding... 8

3.5.1 Depth Map non-linear representation .. 8
3.5.2 Z near - Z far compensation (ZZC) tool .. 9

3.6 Texture layer coding ... 9
3.6.1 Depth dependent adjustment of QP for texture layer .. 9

3.7 Residual layer coding ... 10
3.8 Inter-view prediction by view synthesis ... 10
3.9 MVC toolset implemented in HEVC ... 11
3.10 Depth-Based Motion Prediction (DBMP) .. 11

3.11 Stream multiplexing .. 12
4 Fulfillment of the conditions defined in "Call for Proposal" .. 13
5 Fulfillment of the conditions defined in "Requirements" ... 13
6 Software implementation description .. 15
7 Coding parameters of submitted materials .. 16

7.1 Coding order ... 16
7.2 View number convention .. 16
7.3 Configuration file ... 16

8 Compression performance ... 20
9 Complexity analysis .. 27

10 Conclusions ... 28

11 Acknowledgement ... 28

12 Patent rights ... 29

13 References ... 29

3

1 Introduction

This documents presents a technical description of compression technology prepared at Poznan
University of Technology in response to Call for Proposals on 3D Video Coding Technology [1].
The proposed technology is HEVC-based and the bitstream of the base view is HEVC-
compatible. In the codec implementation for view synthesis standard VSRS has been used.

2 Overview

The proposed technology is HEVC-compatible. One of the views is coded in HEVC syntax
(texture only) while for remaining data (texture and depth) additional syntax structures have been
proposed. For both texture and depth hierarchical view coding structure similar to MVC is used:
the already coded views are used as references for prediction of the subsequent views. There are
three main inter-view prediction types: view-synthesis (DIBR-based), disparity-compensation
(MVC-like), and depth-based motion prediction (DBMP).

The main idea of the proposed coding technology is to exploit view-synthesis prediction as much
as possible. The base view (HEVC-compatible view) and its depth are coded directly i.e. without
any inter-view prediction. The side views (textures and depths) are synthesized using the base
view as a reference. Then, in the side views, disoccluded regions (hidden in the base view) are
identified. Only the disoccluded regions from the side views are coded. Coding of the side views
takes advantage of other inter-view prediction modes: disparity compensation and DBMP.

The cameras parameters are compressed and transmitted in SEI messages in a single bitstream
along with the video.

2.1 Coder overview

The block scheme of an encoder is shown in Fig. 1. The input data format (multi-view video
plus depth representation) is converted to the single-view plus disocclusion representation. Then,
converted data is encoded with the use of five sub-encoders that produce separate sub-streams.
These encoders cooperate by mutually providing the inter-view prediction data and the camera
information. The resultant sub-streams are finally multiplexed and encapsulated into base view
bitstream in order to produce the output bitstream.

There are five sub encoders:

• HEVC-compatible encoder, used for coding of a single base view (Section 3.3),

• Camera parameters encoder (section 3.4),

• HEVC-based depth encoder, used for coding of depth data (Section 3.5),

• HEVC-based texture encoder, used for coding of side views (Section 3.6),

• HEVC-based residual encoder, used for coding of residual layer (Section 3.7).

4

Fig. 1. Scheme of the proposed coder.

The number of coded texture views n can be different from the number of coded depth maps m.
Also the number of coded camera parameters sets l can be different from the number of coded
texture views n, and depth maps m. The number of coded texture views n, depth maps m, camera
parameters sets l and residuals k are independently settable in the coder configuration file.

2.2 Decoder overview

The 3D video bitstream consists of 5 sub-streams. Each sub-stream represents one of the
following types of data:

• texture of base view, compatible with HEVC syntax, contains sequence and picture
parameter sets etc.,

• textures of the side views,

• depth maps corresponding to individual views,

• residual layer of individual views,

• camera parameters.

Each of the sub-streams can be independently extracted from the 3D video bitstream.

 Decoder consists of a sub-stream extractor, a demultiplexer, and 5 sub-decoders. Base
view sub-stream is decoded independently from all others by the original (unmodified) HEVC-
compatible decoder. In order to decode other sub-streams, the camera parameters sub-stream

5

needs to be decoded first in the camera parameters decoder. The decoded camera parameters are
fed to other decoders except abovementioned base-view decoder. Depth maps sub-streams are
decoded in the HEVC-based depth decoder with the use of the camera parameters decoded
earlier, in advance. The depth maps are then fed into the HEVC-based texture decoder along
with the decoded base view. The texture sub-stream are decoded in the HEVC-based texture
decoder with the use of previously decoded camera parameters, depth maps, and the base view.
At the end, the reconstructed residual layers of individual views are added to textures of all
views.

Fig. 2. Scheme of the proposed decoder.

Final view synthesis

View synthesis is performed after the decoding. In the implementation it was done with the use
of standard VSRS 3.5 [3]. In the case of GT-Fly sequence batch file provided by Nokia has been
used.

3 Algorithm Description

3.1 Texture layer separation

The proposed technology use an approach, similar to SVC (Scalable Video Coding)
or to wavelet coding, in which input video is spitted into layers in the spatial frequency domain.
Each layer presents different level of details, and all layers represent the input video.

6

In case of our proposal, the input video texture is split into two layers:

- the so called texture layer (similar to base layer in SVC), which contains content that can be
efficiently coded with classic predictive coding.

- the so called residual layer, which contains high frequency residual content that can be
represented jointly for several views.

Both layers are transmitted to the decoder and after decoding are summed together in order to
produce reconstructed video.

The separation of layers occurs at the very beginning of the processing as a result of motion-
compensated temporal filtering [5].

Each frame of each view is processed independently. Block-based motion estimation
is performed in order to find motion vectors pointing to frames neighboring in time (3 previous
and 3 next frames). Basing on matched blocks low-pass filtering is performed.

The process yields low-frequency texture layer which is fed to the texture encoder, while the
remaining high frequency residual part of the input video is fed to the residual layer encoder.

The layer separation process is entirely automatic.

3.2 Unified depth representation

As mentioned before, the idea behind the proposed technology is that only the base view (texture
and depth) is coded directly as a whole. In side views only the disoccluded regions are coded,
while the remaining parts are reconstructed from the available views using DIBR (Depth Image
Based Rendering). In such an approach, the amount of depth information in side-views
is considerably reduced. Because the amount of coded data is limited, it is necessary to adjust the
input set of depth maps in such a way, that the single depth map related to the base view contains
as much information as possible. To attain that, the depth information represented by the depth
maps is merged into a unified depth representation and then projected back onto the views,
so that a refined set of depth maps is produced. This step is a necessary part of data format
conversion and is fully automatic. Of course, only legal input textures and depth maps are taken
into account: 2 views for 2-view case and 3 views for 3-view case, but the process is not limited
only to such cases.

The first stage is to improve depth map smoothness by using Mid-Level Hypothesis algorithm
[6]. The further processing is based on merging depth information into an unified scene depth
representation by depth synthesis (Fig. 3).

Each of the input depth maps D1...Dn is used to synthesize virtual view Di' in i-th view's position.
For each virtual depth map, fragments with no information (disocclusions) are filled with
information from other virtual depth maps, where the information is present. Then, a new unified
depth map Di'' is computed as a result of weighted median filtration of all virtual depth maps
across all views.

7

Depth
synthesis

D1

Depth

synthesis

Depth

synthesis

Dn

Median filter
Texture

synthesis

Di’’

Ti

Texture

comparison

Texture

comparison

Texture
comparison

Tn

T1

Tj

T1'

Tj'

Tn'

Depth value
restoration

Di

K1

Kj

Kn

K1...Kn

Di’’’

. . .

. . .

. . .

. . .

Di Disocclusion
handling

D1’

Dn’

Di’

Fig. 3. Block diagram of depth unification process. T1...Tn are input textures,
D1...Dn are input depth maps, D1'...Dn' are depth synthesized in position of i-th view,

T1''...Tn' are synthesized textures, and D1''' is resultant unified depth map.

To prevent virtual texture quality loss due to unsupervised depth map modification, virtual
texture quality is assessed. Using depth map Di' and input texture Ti, virtual textures
T1'...Tn' are synthesized. These virtual textures are then compared with the original textures
T1...Tn and for each a difference cost image Kj is computed. In regions, where any of difference
costs values in K1...Kn exceed given threshold, depth value is replaced with an arithmetic
average of Di'' and Di . This yields resultant unified depth map Di'''.

The above-mentioned algorithm is repeated for each of the input views, so that a refined set
of depth maps is produced.

3.3 Base view texture layer coding - HEVC-compatible codec

The syntax of the base view is compliant with HEVC, because no modifications has been
introduced. The original HM encoder has been enhanced to support GOP sizes that are not
necessarily powers of 2 in order to better suit random access requirement. Exemplary allowed
GOP sizes allowed are 12 and 15, which were used for coding of test material.

3.4 Camera parameters coding

The intrinsic and extrinsic camera parameters are encoded into the bitstream in Multiview SEI
messages. Those messages are sent once per a GOP and provide the camera parameter set for all
frames and views in a GOP.

Three types of SEI messages are used:

• Multiview Acquisition Info SEI - that transports intrinsic and extrinsic camera parameters
as described in [8]. In our proposal the original syntax and semantics were slightly
modified in order to efficiently encode frame-to-frame changes of the camera parameters,

8

• Multiview Translation Info SEI - that transports the translation parameter, was especially
designed for the case when the value of translation parameter is modified from frame to
frame,

• Multiview Depth Info SEI is used to encode znear and zfar depth parameters and also
provides efficient an prediction mechanism for the case when values of znear and zfar
parameter are modified from frame to frame.

3.5 Depth coding

Depth layer coding is based on HEVC codec with some 3D improvements:

• in side views, view-synthesis prediction is used and thus only disoccluded regions
are coded,

• inter-view disparity compensation (MVC-like) is used,

• inter-view depth-based motion prediction (DBMP) is used,

and some depth-specific improvements:

• Depth is internally represented non-linearly, so that closer objects are represented more
accurately than distant objects - see 3.5.1. for details,

• 64x64 transform (not available in HEVC 3.0) is used, see JCTVC-D224 for details,

• when used as a prediction reference, depth values are firstly compensated with respect
to znear-zfar range, which can be different among frames - see 3.5.2 for details,

• edge ringing artifacts in depth are reduced with specially tuned RD-opt.

3.5.1 Depth Map non-linear representation

The human perception of depth depends on absolute distance of viewed objects, therefore the
internal depth representation is non-linear. Closer objects are represented more accurately than
distant ones. Internal depth sample values are defined by the following power-law expressions,
similar as in the case of well known gamma correction:

9

Exponent is automatically chosen by encoder and sent to decoder in the encoded bitstream.
Depth map samples are represented on increased number of bits with use of IBDI (Internal Bit
Depth Increase) tool.

3.5.2 Z near - Z far compensation (ZZC) tool

Proposed znear-zfar compensation (ZZC) is a new coding tool for multiview video, designed
especially for inter-frame depth map coding.

The concept of ZZC exploits the observation that frames from different views and time instances
of encoded depth sequence may have different znear and zfar parameters. The mentioned znear and
zfar parameters describe range of depths represented in a gray-scale depth map. If znear and zfar
parameters are different for two frames, then given depth value is represented with different
gray-scale values in those depth maps. Consequently, using one of such depth maps
as a reference for the other one will result in a poor prediction.

To overcome this problem, a new ZZC coding tool is proposed. Prior to any inter-frame depth
map prediction, each depth map that resides on the codec reference picture list is scaled, so that
gray-scale depth values in scaled image and currently coded image refer to the same depth.
As a result, depth maps with compensated znear and zfar range are used for prediction.

3.6 Texture layer coding

Here, we describe the texture layer coding that is used for all views except for the base view
(which is coded with HEVC-compatible coder).

The texture layer coding is based on HEVC codec with some improvements related to the
3D video:

• view-synthesis is used and only disoccluded regions are coded,

• inter-view disparity compensation (MVC-like) is used,

• inter-view depth-based motion prediction (DBMP) is used,

and some texture-specific improvements:

• QP parameter is locally adjusted with respect to depth, so that closer objects are coded
with higher quality than distant objects - see Section 3.6.1 for details.

3.6.1 Depth dependent adjustment of QP for texture layer

In order to improve perceptual quality of coded texture, a tool for bit assignment in the texture
layer was developed. The basic idea is to increase texture quality of objects in the foreground
and to increase compression factor (decrease texture quality) for objects in the background. The
quality is adjusted in coding units (CUs) with use of quantization parameter QP that depends on
the corresponding depth values. The QP adjustment is done simultaneously in coder and decoder

10

so that no additional information is send. Described tool is disabled in the base view to preserve
HEVC compatibility.

3.7 Residual layer coding

The content of the high frequency residual layer is usually not compressed efficiently with
classic predictive coding. Sample values of this layer are not correlated and resemble noise.
Thus, the content of the residual layer is modeled as a non-stationary random process which can
be coded jointly among the views. The only parameters of this process: spatial energy
distribution and spectral envelope are coded.

Spatial energy distribution of the residual layer is estimated with use of block-based processing.
The residual video is divided into rectangular non-overlapping blocks. In each of those blocks,
energy is measured. Energy values, associated with respective blocks, constitute an image
of spatial energy distribution, whose resolution is smaller than resolution of the input video.
Spatial energy distribution is coded with use of HEVC-based coder.

Spectral envelope is estimated from energy-normalized residual layer with use of technique
similar to LPC. The result is a set of IIR filter coefficients (in horizontal and vertical direction)
which are coded with use of LAR (log-area-ratio) 8-bit representation. A set of filter coefficients
is sent in slice header (likewise to SAO/ALF filters) once per picture, and can be predicted
through GOP structure.

The proposed technology allows for coding of residual layer for all views or only for one
selected view. In the latter case, residual layer in the missing views is synthesized.

3.8 Inter-view prediction by view synthesis

View synthesis is used as a primary inter-view prediction mechanism. The encoder and the
decoder use the same synthesis algorithm, similar to VSRS 3.5. Basing on all already coded
views, a new virtual view is synthesized in the position of the current view. Some regions
of newly synthesized image are not available because they were occluded in previously coded
views. Those disoccluded regions are identified and marked on a binary map, named availability
map, which controls coding and decoding process. Coder and decoder simultaneously use this
map to determine, whether given CU is coded or not. Because in
a typical case most of the scene is the same in all of views, only small parts are disoccluded
in subsequently coded views, and thus only small amount of CUs is coded.

A final step of view-synthesis prediction is reduction of artifacts in synthesized view. This post-
processing consists of Depth-Gradient-based Loopback Filterer (DGLF) and Availability
Deblocking Loopback Filter (ADLF).

The first one (DGLF), reduces texture artifacts introduced by DIBR technique in the areas
of a sudden depth changes. In order to cope that the synthesized image is adaptively filtered with
respect to depth gradient strengths. Large depth edges impose strong low-pass filtering of the
synthesized texture, while flat depth regions are not filtered at all.

11

The latter (ADLF), reduces artifacts that are generated as a result of block CU-based coding.
Shape of coded region not necessarily matches shape of binary availability map. This
discrepancy is a source of artificial edges between those regions. The ADLF provides smooth
transition between coded and synthesized regions by interpolating between them.

The tool of prediction by view-synthesis is used in texture layer codec, depth layer codec
and high frequency residual layer codec.

3.9 MVC toolset implemented in HEVC

The proposed technology exploits inter-view disparity compensation mechanism in a way similar
to the one used in the MVC extension of the AVC. Inter-view prediction works by adding inter-
view references to the reference lists used for texture and depth image inter prediction. Similarly
to MVC, there is a distinction between anchor and non anchor frames and the use of inter-view
references can be controlled separately for them. Moreover texture and depth image reference
lists are also managed separately. The number of reference views for inter prediction, as well as
their IDs for textures and depths, can be chosen independently. No change in the structure
of the reference lists is done for the base view in order to preserve its compatibility with the
single view HEVC decoder.

3.10 Depth-Based Motion Prediction (DBMP)

Depth-Based Motion Prediction (DBMP) is a new coding tool for multiview video coding which
originates from the idea that motion fields of neighboring views in multiview sequence are
highly correlated. The concept of DBMP was previously described in [9, 10] under the name of
inter-view direct. DBMP provides an efficient representation of motion data in multiview video
bitstreams that carry also depth/disparity maps. In the proposed method, the motion information,
such as motion vectors and reference indices, for each pixel of encoded coding unit (CU)
is directly inferred from already encoded CUs in the neighboring views at the same temporal
instance (Fig. 4). This procedure is repeated independently for every pixel of encoded CU.
Consequently, motion vectors and reference indices for CU are not transmitted in the bitstream
but are obtained from the reference view.

12

Fig. 4. Independent derivation of motion information for each point of encoded CU
from corresponding point in reference view [9].

3.11 Stream multiplexing

The bitstream consists of 4 types of sub-streams (see Fig. 1):

• texture of the base view,

• texture of a side view (more than one such sub-stream may exist),

• depth map of a view (more than one such sub-stream may exist),

• residual of a view (one or more such sub-stream may exist).

An encoder produces a bitstream in the form of a sequence of standard NAL units. The bitstream
of the base view is compliant with HEVC syntax.

Other streams, that are not HEVC-compatible, are encapsulated in transparent NAL units, so that
they can be skipped by a basic HEVC decoder. Full 3D decoder can use them to decode all of the
input views or only some of them.

Fig. 5. Sub-stream encapsulation in NALU.

The encapsulation process (see Fig. 5) exploits values of nal_unit_type field (see Table 1)
to carry information about encapsulated stream type. Those nal_unit_type values that are used,
hitherto were marked as undefined in the Working Draft [7].

Table 1. Contents of new NAL unit types.

new_nal_unit_type Content

24 Side view textures

25 Depth maps

26 High frequency residuals

13

All remaining data related with incoming NALU: original nal_unit_type, view number and
payload, all are transported inside the encapsulated NALU and (after extraction) transparently
delivered to the sub-decoders.

4 Fulfillment of the conditions defined in "Call for Proposal"

The proposed technology and contributed material fulfill conditions described in CfP [1].
In particular:

- the contribution was made in HEVC-Compatible & Unconstrained category and
the bitstream is HEVC-compatible,

- complete results for all test cases were submitted,

- random access requirement, though usage of GOP size 12 (for class A sequence) and
15 (for class C sequences),

- automatic quantization adjustment based on depth was used and is described
in Section 3.6.1,

- all processing before the coding is related to data format conversion - this includes the
texture layer separation and the processing required for depth unified representation,

- multi-pass encoding is limited to the picture level.

5 Fulfillment of the conditions defined in "Requirements"

The matter of requirements imposed in Requirements document [2] is discussed below:

Ad 3.1.1. Video Data

The proposed technology supports both stereo and multiview input video data. The number
of transmitted views is fully settable in configuration file.

The proposed uncompressed data format includes samples from left and right views, which are
input and output of the codec. Depending on the mode used, it can be all input samples from left
and right views or only samples used by the view synthesis algorithm to produce high quality
intermediate views.

Ad 3.1.2 Supplementary data

The proposed technology supports generation of high quality intermediate views by transmitting
depth maps along with textures. In order to produce intermediate views, DIBR is performed with
use of the reconstructed data. All required camera parameters are transmitted along with the
video, and support random access feature as well.

14

Ad 3.1.3 Data volume

The total amount of uncompressed video and supplementary data strongly depends on the
particular structure of the coded scene, because in all side views only disoccluded regions are
processed. In usual case, the total amount of uncompressed video and supplementary data is
about 2 to 3 times of a single uncompressed video data.

Ad 3.1.4 Metadata

The proposed technology supports efficient camera parameter coding. Both the intrinsic and
the extrinsic camera parameters along with znear and zfar value can be send in efficient frame-to-
frame manner in the bitstream for each depth map.

Camera parameters are sent along with other types of data and random access is provided with
the same period as for the rest of the bitstream.

Ad 3.1.5 Low complexity for editing

The proposed codec can work in all-I mode in which all frames in all views are coded as
I frames, so that each time frame can be acessed separately. In case of other GOP structures, the
editing capability is the same as in MVC.

Ad 3.1.6 Applicability

The proposed technology can be used for both natural and synthetic scenes.

Ad 3.2.1 Compression efficiency

The proposed technology is capable of coding video and supplementary data in a bitstream with
bitrate not exceeding twice the bit rate of a single video compressed with HEVC. The proposed
technology is based on HEVC and offers higher compression performance than MVC [11].

Ad 3.2.2 Synthesis accuracy

The compressed data format employs disocclusion detection, which is based on view synthesis.
Therefore, regions that are not used in the view synthesis are not coded at all, and thus,
remaining regions are coded with higher quality. The proposed technology supports independent
control of compression strength for both texture and depth data.

Proposed technology is not directly related to any rendering technology. Only the estimation
of disoccluded regions of the image is done with use of synthesis algorithm similar to VSRS 3.5.

Ad 3.2.3 Forward compatibility

Base view can be decoded with use of HEVC monoscopic decoder. Syntax of other substreams
is based on HEVC syntax.

15

Proposed technology supports also stereo compatible mode where two view are coded with
HEVC in simulcast mode without inter-view prediction, and can be putted together in one
bitstream.

Proposed technology also supports MVC extension of HEVC for transmitting stereo pair.

Ad 3.2.4 Stereo/Mono compatibility

Proposed technology supports simple mono and stereo bitstream extraction simply by NALU
filtering.

Ad 3.2.5 View scalability

Proposed technology supports view scalability simply by NALU filtering.

Ad 3.3.1 Rendering capability, 3.3.4 Variable baseline, 3.3.5 Depth range, 3.3.6 Adjustable
depth location

Proposed technology uses state-of-the-art multivideo plus depth (MVD) representation of the
data Proposed technology is not directly related to any rendering technology. Only the detection
of disoccluded regions of the image is performed with use of synthesis algorithm, similar
to VSRS 3.5. Any state-of-the-art DIBR algorithm can be used instead.

Ad 3.3.2 Low complexity

Fast and reliable rendering of intermediate views is possible, because uncompressed data format
is composed of only the base view and disoccluded regions of the side views.

Ad 3.3.3 Display types

Proposed technology is independent from display type. Stereoscopic and autostereoscopic
displays are supported.

6 Software implementation description

This software is written in C++ programming language. The implementation is based on HEVC
codec version HM3.0-dev. The software was retrieved from HEVC repository server on May
10th 2011. The software is identified as revision 866. In addition to base software, some bug-
fixes from HEVC repository has been merged. Bug-fixes for #128 (changeset 1008) and #174
(changeset 1009) has been added.

Also some additional libraries has been used, like [4], [5].

The software has been compiled and run successfully under Microsoft Windows using the
Microsoft Visual Studio 2005, 2008 and 2010 C++ compiler in their 32-bit and 64-bit variants.
Coding of Full-HD resolution sequences may require a 64-bit system.

16

7 Coding parameters of submitted materials

7.1 Coding order

The proposed technology supports various view configurations. All sequences submitted
in response to CfP [1] were encoded with the following coding order.

In 3-view case the middle view is used as base view, whereas in 2-view case the right view
is used as the base view. The texture for the base view is the first to be encoded, then the depth
map for the base view is encoded. Next, the dependent views are encoded, but for a dependent
views depth map always precede the texture. Lastly, the high frequency residual layer for the
base view is encoded.

E.g. for Poznan Street sequence in 3-view case, the following coding order was used:

• Base view – view 4,

• Depth map for view 4,

• Depth map for view 3,

• Texture for view 3,

• Depth map for view 5,

• Texture for view 5,

• Residual layer for view 3.

7.2 View number convention

In order to conveniently identify input stream, the following naming convention is used. Views
containing textures are numbered 0-99. Views containing depth maps are numbered 100-199.
Views containing residual layer are numbered 200-299. This allows an easy identification
of a position and type of a view (depth, texture, residual layer) throughout the entire codec.

7.3 Configuration file

Table 2 presents comparison of the configuration file for the anchor HEVC 2.0 codec and for the
proposed one. Newly introduced parameters were highlighted red. Some of them are related to
progress made in HEVC development, and some are related to the proposed tools. Parameters
related to coding order and inter-view prediction scheme are presented in Table 3.

17

Table 2. Comparison of anchor HEVC 2.0 configuration file
with configuration file of the proposed codec.

Parameter Proposed
Codec

Anchor
HEVC Codec

New parameter
description

File I/O

InputFile
depends on
sequence

depends on
sequence

BitstreamFile
depends on
sequence

depends on
sequence

ReconFile
depends on
sequence

depends on
sequence

InputBitDepth 8 8
OutputBitDepth 8 8

FrameRate
depends on
sequence

depends on
sequence

FrameSkip 0 0

SourceWidth
depends on
sequence

depends on
sequence

SourceHeight
depends on
sequence

depends on
sequence

FrameToBeEncoded
depends on
sequence

depends on
sequence

MultiviewSEIcfg
depends on
sequence

n/a
file containing
camera parameters
to be encoded

ResidualCoeffsInputFile
depends on
sequence

n/a
file containing
residual layer
filter coefficients

ResidualBlock 30 n/a
Block size for
residual energy
modelling

ResidualFactor 40 n/a
Normalization
factor for residual
energy modelling

Unit definition
MaxCUWidth 64 64
MaxCUHeight 64 64
MaxPartitionDepth 4 4
QuadtreeTULog2MaxSize 5 5
QuadtreeTULog2MinSize 2 2
QuadtreeTUMaxDepthInter 3 3
QuadtreeTUMaxDepthIntra 3 3
Coding Structure
IntraPeriod 12 8
DecodingRefreshType 1 1
GOPSize 12 8
RateGOPSize 12 8
NumOfReference 4 4

18

Parameter Proposed
Codec

Anchor
HEVC Codec

New parameter
description

NumOfReferenceB_L0 2 2
NumOfReferenceB_L1 2 2
HierarchicalCoding 1 1
LowDelayCoding 0 0
GPB 1 1
NRF 0 1
BQP 0 0
ListCombination 1 1
Motion Search
FastSearch 1 1
SearchRange 64 64
BipredSearchRange 4 4
HadamardME 1 1
FEN 0 0
Quantization

QP
depends on
sequence

depends on
sequence

depthQP
depends on
sequence

n/a
QP value for depth
map

residualQP 35 n/a
QP value for
residual layer

MaxDeltaQP 0 0
DeltaQpRD 0 0
RDOQ 1 1

DepthPower -1 n/a
power factor used
to encode depth
map, -1 is default

Entropy Coding
SymbolMode 1 1
Deblock Filter
LoopFilterDisable 0 0
LoopFilterAlphaC0Offset 0 0
LoopFilterBetaOffset 0 0
Misc.
InternalBitDepth 10 10
Coding Tools
MRG 1 1
ALF 1 1
SAO 1 n/a new in HM 3.0
ALFEncodePassReduction 0 n/a new in HM 3.0
Slices
SliceMode 0 n/a new in HM 2.2
SliceArgument 1500 n/a new in HM 2.2
LFCrossSliceBoundaryFlag 1 n/a new in HM 2.2
EntropySliceMode 0 n/a new in HM 2.2
EntropySliceArgument 180000 n/a new in HM 2.2
PCM
PCMLog2MinSize 7 n/a new in HM 3.0-dev

19

Table 3. Prediction structure configuration parameters in the proposed codec.

Parameter name
Exemplary value for

GT_Fly sequence
New parameter

description
Multiview Coding Parameters
NumViews 7 number of encoded views
ViewOrder 5-105-101-1-109-9-205 views encoding order
View prediction structure parameters
ViewNumber 5 view number
AnchorRefTextureL0 x reference view number

for anchor frame (list
0) or "x" if none

AnchorRefTextureL1 x reference view number
for anchor frame (list
1) or "x" if none

NonAnchorRefTextureL0 x reference view number
for non-anchor frame
(list 0) or "x" if none

NonAnchorRefTextureL1 x reference view number
for non-anchor frame
(list 1) or "x" if none

ViewNumber 1

Same as above
AnchorRefTextureL0 5
AnchorRefTextureL1 x
NonAnchorRefTextureL0 5
NonAnchorRefTextureL1 x
ViewNumber 9

Same as above
AnchorRefTextureL0 5
AnchorRefTextureL1 x
NonAnchorRefTextureL0 5
NonAnchorRefTextureL1 x
ViewNumber 105

Same as above
AnchorRefTextureL0 x
AnchorRefTextureL1 x
NonAnchorRefTextureL0 x
NonAnchorRefTextureL1 x
ViewNumber 101

Same as above
AnchorRefTextureL0 105
AnchorRefTextureL1 x
NonAnchorRefTextureL0 105
NonAnchorRefTextureL1 x
ViewNumber 109

Same as above
AnchorRefTextureL0 105
AnchorRefTextureL1 x
NonAnchorRefTextureL0 105
NonAnchorRefTextureL1 x
ViewNumber 205

Same as above
AnchorRefTextureL0 x
AnchorRefTextureL1 x
NonAnchorRefTextureL0 x
NonAnchorRefTextureL1 x
ViewNumber 201

Same as above
AnchorRefTextureL0 x
AnchorRefTextureL1 x
NonAnchorRefTextureL0 x
NonAnchorRefTextureL1 x
ViewNumber 209

Same as above
AnchorRefTextureL0 x
AnchorRefTextureL1 x
NonAnchorRefTextureL0 x
NonAnchorRefTextureL1 x

20

8 Compression performance

The proposed technology, implemented on basis of HM software (see Section 6), was used to
encode the test materials with parameters described in Section 7. The PSNR values of the
decoded 3D video has been compared to those of anchor sequences. Other views that the base
has not been compared, because these views are reconstructed with view-synthesis technique,
chich implies different types of artifacts than coding and thus cannot be adequatly compared
with PSNR. Bjontegaard [12] metric results, shown in Table 4, reveal average 57,9% gain
(2-view case) and 69,8% gain (3-view-case) over anchor coding. Figures 7-10 show RD-curves
for the base view for all sequences in 2-view and 3-view case separately. Average percentage of
the overall bitstream consumed by given substreams is shown in Figures 11-14.

Please note that PSNR is not a good tool for quality assessment of video coded with statistical
tools, like high frequency residual layer coding. Other experiments performed by authors, show
that subjective quality assessment implies higher bitrate reduction as for PSNR evaluation.

Table 4. Bjontegaard [12] metric results for the base view: 2-view and 3-view case.

Sequence
2-view case 3-view case

ΔPSNR [dB] ΔBitrate [%] ΔPSNR [dB] ΔBitrate [%]

Poznan_Hall2 1,8 -45,3 2,5 -59,3

Poznan_Street 2,7 -54,6 3,9 -69,6

Undo_Dancer 1,9 -51,0 2,7 -62,6

GT_Fly 2,2 -55,5 3,1 -67,0

Kendo 4,2 -58,8 6,2 -73,3

Balloons 5,2 -64,6 6,7 -74,3

Lovebird1 4,2 -66,7 5,8 -76,4

Newspaper 5,1 -66,5 6,3 -76,1

Average 3,4 -57,9 4,7 -69,8

21

a) Poznan_Hall2 sequence

26

28

30

32

34

36

38

40

42

100 300 500 700 900 1100 1300 1500

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Serie2

b) Poznan_Street sequence

26

28

30

32

34

36

38

40

42

100 300 500 700 900 1100 1300 1500

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Serie2

c) Undo_Dancer sequence

26

28

30

32

34

36

38

40

42

100 300 500 700 900 1100 1300 1500

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Serie2

d) GT_Fly sequence

26

28

30

32

34

36

38

40

42

100 300 500 700 900 1100 1300 1500

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Serie2

Fig. 7. Compression performance - 2-view-case - class A sequences.

22

a) Kendo sequence

26

28

30

32

34

36

38

40

42

100 300 500 700 900 1100 1300 1500

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Serie2

b) Balloons sequence

26

28

30

32

34

36

38

40

42

100 300 500 700 900 1100 1300 1500

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Serie2

c) Lovebird1 sequence

26

28

30

32

34

36

38

40

42

100 300 500 700 900 1100 1300 1500

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Serie2

d) Newspaper sequence

26

28

30

32

34

36

38

40

42

100 300 500 700 900 1100 1300 1500

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Serie2

Fig. 8. Compression performance - 2-view-case - class C sequences.

23

a) Poznan_Hall2 sequence

26

28

30

32

34

36

38

40

42

100 600 1100 1600 2100

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Proposal

b) Poznan_Street sequence

26

28

30

32

34

36

38

40

42

100 600 1100 1600 2100

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Proposal

c) Undo_Dancer sequence

26

28

30

32

34

36

38

40

42

100 600 1100 1600 2100

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Proposal

d) GT_Fly sequence

26

28

30

32

34

36

38

40

42

100 600 1100 1600 2100

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Proposal

Fig. 9. Compression performance - 3-view-case - class A sequences.

24

a) Kendo sequence

26

28

30

32

34

36

38

40

42

100 600 1100 1600 2100

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Proposal

b) Balloons sequence

26

28

30

32

34

36

38

40

42

100 600 1100 1600 2100

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Proposal

c) Lovebird1 sequence

26

28

30

32

34

36

38

40

42

100 600 1100 1600 2100

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Proposal

d) Newspaper sequence

26

28

30

32

34

36

38

40

42

100 600 1100 1600 2100

P
S

N
R

 [
d

B
]

Bitrate [kbps]

Anchor

Proposal

Fig. 10. Compression performance - 3-view-case - class C.

25

Fig. 11. Percentage of substreams bitrate in the overall bitstream,
averaged over class A and class C sequences, 2 view case.

Fig. 12. Percentage of substreams bitrate in the overall bitstream,
averaged over class A and class C sequences, 3 view case.

26

Fig. 13. Percentage of bitrate in the overall bitstream - comparison between
a single base view (plus depth) and a single side view (plus depth) - 2 view case.

Other substreams than textures and depths are ommited.

Fig. 14. Percentage of bitrate in the overall bitstream - comparison between
a single base view and a single side view - 3 view case.
Other substreams than textures and depths are ommited.

27

9 Complexity analysis

The computational complexity of the proposed technology has been assessed with use of the
current software implementation. Its performance has been compared to anchor technology,
which is HM codec. The experiment has been done on 64-bit Intel i7 machine with 4GB
of memory.

Processing time of a single frame of video, averaged over sequences in classes A and C
separately, for 2-view and for 3-view case is shown in Fig. 15, including data format conversion
(Layer separation and Depth Unified Representation), encoding (all views, all layers), decoding
(overall time) and also encoding and decoding time of anchor HM codec.

Fig. 16 presents the same decoding time as Fig. 15 but in greater detail.

Processing time required to encode a single frame of given substream, averaged over sequences
in classes A and C separately, for 2-view and for 3-view case is presented in Fig. 17.

The expected memory usage of the current implementation of the encoder and the decoder does
not exceed:

• 4 times the memory usage of the single view HM encoder/decoder for 3-view-case
(which is about 3 GB for full HD sequences) and,

• 3 times the memory usage of the single view HM encoder/decoder for 2-view-case
(which is about 2 GB for full HD sequences).

We expect that after optimizations, subsequent views can be processed in a sequential manner,
so that only one view is processed in the codec at a time.

0

100

200

300

400

500

600

Data Format Conversion Encoding Decoding Encoding Anchor Decoding Anchor

Time [s]

2-view case, Class A

3-view case, Class A

2-view case, Class C

3-view case, Class C

Fig. 15. Average frame processing time: data format conversion (Layer separation and Depth
Unified Representation), encoding (all views, all layers), decoding (overall time) and also

encoding and decoding time of anchor HM codec.

28

0

1

2

3

4

5

6

7

8

9

10

11

Decoding Decoding Anchor

Time [s]

2-view case, Class A

3-view case, Class A

2-view case, Class C

3-view case, Class C

Fig. 16. Average frame processing time:
comparison between proposed technology and anchor (HM codec).

Fig. 17. Amount of time required to encode a single frame of given substreams, averaged over
sequences in classes A and C separately, for 2-view and for 3-view case.

10 Conclusions

The contribution was made in HEVC-Compatible & Unconstrained category and the devised
bitstream is compatible with HEVC syntax. However, it is worth to notice that the proposed 3D
coding technology is in nature independent from single-view coding technology and with some
minor changes it can be easily adapted to different coding standards, like AVC or MVC.

11 Acknowledgement

This work was supported by the public funds as a research project.

29

12 Patent rights

Poznan University of Technology may have IPR relating to the technology described in this
contribution and, conditioned on reciprocity, is prepared to grant licenses under reasonable and
non-discriminatory terms as necessary for implementation of the resulting ITU-T
Recommendation | ISO/IEC International Standard (per box 2 of the UTI-T/ITU-R/ISO/IEC
patent statement and licensing declaration form).

13 References

[1] "Call for Proposals on 3D Video Coding Technology", ISO/IEC JTC1/SC29/WG11
MPEG2011/N12036, Geneva, Switzerland, March 2011

[2] ISO/IEC JTC1/SC29/WG11, “Applications and Requirements on 3D Video Coding”, Doc.
N11829, Geneva, Switzerland, March 2011

[3] Y. Mori, N. Fukushima, T. Yendo, T. Fujii, M. Tanimoto, ''View generation with 3D
warping using depth information for FTV". Signal Processing: Image Communication.
Volume 24. Issue 1-265-72 (2009)

[4] http://avlib.multimedia.edu.pl

[5] http://avisynth.org.ru/mvtools/mvtools.html

[6] O. Stankiewicz, M. Domański, K. Wegner, "Stereoscopic Depth Refinement by Mid-Level
Hypothisis", IEEE International Conference on Multimedia & Expo, Singapore, Singapore,
July 2010

[7] T. Wiegand, W.-J. Han, B. Bross, J.-R. Ohm, G. J. Sullivan, "WD3: Working Draft 3 of
High-Efficiency Video Coding", JCTVC-E603, Geneva, Switzerland, March 2011

[8] S. Yea, A. Vetro, A. Smolic, H. Brust, “Revised syntax for SEI message on multiview
acquisition information”, ITU-T and ISO/IEC JTC1, JVT-Z038, Antalya, Turkey, January
2008

[9] J. Konieczny, M. Domański, “Inter-View Direct Mode for Multiview Video Coding”,
ISO/IEC JTC1/SC29/WG11, MPEG2010/M17800, Geneva, Switzerland, July 2010

[10] J. Konieczny, M. Domański, “Extended Inter-View Direct Mode for Multiview Video
Coding”, ICASSP 2011, Prague, Czech Republic, May 2011

[11] K. Wegner, O. Stankiewicz, K. Klimaszewski, M. Domański, "Comparison of multiview
compression performance using MPEG-4 MVC and prospective HVC technology"
ISO/IEC JTC1/SC29/WG11 MPEG 2010 / M17913, Geneve, Switzerland, 2010

[12] G. Bjontegaard, "Calculation of average PSNR differences between RD-curves", ITU-T
VCEG, Texas, USA, Proposal VCEG-M33, 2001

