
S P E C I A L I S S U E

Recursive block splitting in feature-driven decoder-side
depth estimation

Błażej Szydełko1 | Adrian Dziembowski1 | Dawid Mieloch1 |

Marek Doma�nski1 | Gwangsoon Lee2

1Institute of Multimedia
Telecommunications, Poznan University
of Technology, Pozna�n, Poland
2Immersive Media Research Section,
Electronics and Telecommunications
Research Institute, Daejeon, Rep. of Korea

Correspondence
Adrian Dziembowski, Institute of
Multimedia Telecommunications, Poznan
University of Technology, Pozna�n, Poland.
Email: adrian.dziembowski@put.poznan.pl

Funding information
Institute of Information &
Communications Technology Planning &
Evaluation, Grant/Award Number:
2018-0-00207

Abstract

This paper presents a study on the use of encoder-derived features in decoder-

side depth estimation. The scheme of multiview video encoding does not

require the transmission of depth maps (which carry the geometry of a three-

dimensional scene) as only a set of input views and their parameters are com-

pressed and packed into the bitstream, with a set of features that could make it

easier to estimate geometry in the decoder. The paper proposes novel recursive

block splitting for the feature extraction process and evaluates different scenar-

ios of feature-driven decoder-side depth estimation, performed by assessing

their influence on the bitrate of metadata, quality of the reconstructed video,

and time of depth estimation. As efficient encoding of multiview sequences

became one of the main scopes of the video encoding community, the experi-

mental results are based on the “geometry absent” profile from the incoming

MPEG Immersive video standard. The results show that the quality of synthe-

sized views using the proposed recursive block splitting outperforms that of

the state-of-the-art approach.

KEYWORD S
decoder-side depth estimation, immersive video

1 | INTRODUCTION

Many contemporary multimedia systems, for example,
ones that utilize head-mounted displays to present visual
data to their users, make it possible to virtually navigate
through three-dimensional scenes [1]. Unfortunately,
such a possibility yields the requirement of acquiring pre-
cise geometric information to provide a sufficient level of
immersion, which is impossible to achieve if the quality
of a displayed image is low [2]. For natural scenes, such a
detailed description of the scene can be acquired using
densely arranged multiview camera systems [3–6]

because the quality of the estimated geometry increases
with the number of used cameras [7]. It also increases the
size of data required to process.

Sending a high amount of uncompressed data to a
decoder is highly impractical. Thus, in any practical
immersive video system, efficient encoding of an
immersive video has to be applied. As immersive video
applications gain widespread attention in the video
processing community, there has been a noticeable
increase in standardization efforts in this field [8]. One of
the currently prepared standards, that is, MPEG
Immersive video (MIV) [9], provides state-of-the-art

Received: 1 September 2021 Revised: 1 December 2021 Accepted: 17 December 2021

DOI: 10.4218/etrij.2021-0308

This is an Open Access article distributed under the term of Korea Open Government License (KOGL) Type 4: Source Indication + Commercial Use Prohibition +

Change Prohibition (http://www.kogl.or.kr/info/licenseTypeEn.do).

1225-6463/$ © 2022 ETRI

ETRI Journal. 2022;1–13. wileyonlinelibrary.com/journal/etrij 1

https://orcid.org/0000-0001-7426-3362
mailto:adrian.dziembowski@put.poznan.pl
https://doi.org/10.4218/etrij.2021-0308
http://www.kogl.or.kr/info/licenseTypeEn.do
http://wileyonlinelibrary.com/journal/etr2

methods for efficient encoding of multiview sequences.
Although its main profile focuses on removing interview
redundancy and packing of remaining data, the “geome-
try absent” (MIV GA) profile follows the idea of estimat-
ing the geometry of the scene at the decoder side [10]. In
MIV GA, only a set of input views and their parameters
are compressed and packed into the bitstream. However,
in most cases, the geometry information (eg., in the form
of a depth map for each view [11]) is available on the
encoder side. This situation enables the encoder to send a
set of features that could make it easier to estimate
geometry in the decoder [12,13]. These features include
block-wise information, such as a range of depth in a
block or a skip flag that indicates that the depth in a
block did not change from the previous frame.

This study evaluates different scenarios of feature-
driven decoder-side depth estimation. We assess the
influence of these scenarios on the bitrate of metadata,
quality of final video reconstruction, and time of depth
estimation performed at the decoder side. We also pre-
sent a novel extension of the method supported in the
MIV standard—the introduction of recursive block split-
ting in the feature extraction process. The proposed
method allows the feature extractor to better fit to the
edges of the objects. Thus, it improves the quality and
decreases the computational time of depth estimation.

2 | FEATURE-DRIVEN DSDE

The features derived from depth maps, which are avail-
able in the encoder, helps in solving the fundamental
issues that arise from decoder-side depth estimation.
First, such estimation highly influences the complexity of
the decoding process as depth estimation becomes its
part. Even the fastest approaches are computationally
expensive and cannot provide high-quality depth maps in
real time [14]. Moreover, as depth maps are estimated
using compressed views, some degradation of their
quality can be seen [15,16]. This compression-induced
degradation can be decreased using refinement methods
for compression artifacts reduction [17] or depth map
enhancement [18,19]. However, the use of additional
postprocessing steps increases the valuable time from
acquiring the bitstream to present the virtual view to a
final viewer.

A different approach is shown in feature-driven depth
estimation [12], which assumes three different features
already within the encoded bitstream. The first type is
the depth range within each block of input depth maps
(Figure 1). Sending this information to the decoder
increases the quality of estimated depth by reducing pos-
sible estimation errors, which can be the effect of views

compression, as depth within each block will be cropped
to the provided range. Moreover, the estimation process
can be significantly speeded up as the number of depth
values that have to be considered possibly true by the
estimation becomes much smaller, thereby reducing the
processing time of the entire decoder.

The other features are the above skip flag, which
reduces the number of pixels for which the depth has
to be estimated, and depth estimation parameters,
including regularization parameters that would help the
depth estimator properly estimate smooth gradients of
depth. The latter parameters highly depend on the used
estimator. Therefore, to provide the most overall con-
clusions of our research, these parameters are not con-
sidered further.

The size of blocks is usually not fixed. For example,
the blocks can be divided into four square subblocks [12]
(Figure 2) or two rectangular subblocks (earlier proposed
and evaluated by Szydełko and others [20]). All of these
division types are shown in Figure 3.

F I GURE 1 Basic idea of depth range features: division of

depth maps according to a 128 � 128 grid and sending two

normalized disparity values (the smallest and largest ones) for each

block B

F I GURE 2 Concept of block splitting: Block B from Figure 1

was split into two subblocks (S1 and S2) with a smaller depth range

2 SZYDEŁKO ET AL.

3 | PROPOSED BLOCK SPLITTING

State-of-the-art approaches [12,21] split the block only
once. Therefore, they cannot fit the more complicated
structure of the depth map. To address this, we propose
the recursive solution, where each block can be recur-
sively split several times to fit its edges to the edges in the
depth map (Figure 4).

The motivation of fitting the block grid to the objects’
edges is simple; the depth estimator does not check all
possible disparity values but only the values from the
range [dMinB, dMaxB] (Figure 1). Therefore, if the block
contains only pixels representing a single object (eg., a
fragment of the wall), the range of checked disparities for
each pixel within that block is very narrow, resulting in
faster depth estimation and a lower possibility for esti-
mating wrong depth. In the optimal case, if dMinB and
dMaxB for block B are equal (thus, the block contains a
single object of constant depth), there is no need for
depth estimation for that block.

Before proceeding with recursive splitting, the entire
frame undergoes an initial split into a grid of square
blocks of the selected initial size. This allows using sim-
ple splitting in a quad-tree (or binary-tree) fashion. For
further processing, finding the depth range represented

by each block is required. The distance between the
farthest and nearest objects in the block, along with the
defined split threshold, determines the condition for
subsequent block splits:

if dMinB – dMaxB > splitThreshð Þ : split blockB, ð1Þ

where dMaxB and dMinB are the maximum and mini-
mum values of the normalized disparity within block B,
respectively, directly derived from zNearB and zFarB
values [22] within block B:

dMinB ¼
1

zFarB
� 1

zFar
1

zNear� 1
zFar

� 2b�1
� �

, ð2Þ

dMaxB ¼
1

zNearB
� 1

zFar
1

zNear� 1
zFar

� 2b�1
� �

: ð3Þ

Here, zNear and zFar are the global values of the
nearest and farthest distances for the entire depth map,
and b is the bit depth of the depth map (typically equals
to 10 or 16).

In other words, if the range of depth within the block
is very large, the block should be narrowed down to
smaller blocks. As mentioned in the previous section, the
current approach allows splitting blocks into seven ways
(Figure 3). Basic splitting into quads (four subblocks)
does not require additional processing. However, it is
necessary to select the best possible variant when rectan-
gular splitting is enabled. For all possible variants (except
quads), each subblock is checked using (1). If the depth
range in each subblock of a single variant exceeds the set
threshold, the tested variant is rejected. This is because it
may increase the number of splits, thereby increasing
metadata bitrate. For each variant (including quads), the
sum of the cost volumes for all subblocks is calculated as
follows:

costVolB ¼
X

S � B

dMaxS – dMinSð Þþ1ð Þ �wS �hS, ð4Þ

with width wS and height hS of each subblock S of block
B. The variant with the lowest cost volume was assumed
as the best way to split the block; thus, it was applied.

The entire above process is repeated recursively for
the blocks created in previous splits (Figure 5). Finally,
recursion ends when a block does not meet criterion (1),
or one of the subblock dimensions becomes smaller than
the set minimum block size.

The final step is to exploit the temporal consistency
information from the depth maps. For this, we compare
the corresponding blocks from the current and previous

F I GURE 3 Eight types of block splitting (from the left): no

split, quad split, and six rectangular splits (three vertical and three

horizontal): symmetrical, asymmetrical with a ratio of 25/75, and

asymmetrical with a ratio of 75/25

F I GURE 4 (A) Depth map for one view of sequence kitchen,

(B) block grid obtained using a state-of-the-art approach (max block

size: 128, min block size: 64), and (C) block grid obtained using a

recursive approach (max block size: 128, min block size: 8)

SZYDEŁKO ET AL. 3

frames. The similarity of the blocks is determined by the
similarity of the depth range and the ratio of the average
SAD (per pixel) to the maximum possible depth value. If
the similarity value exceeds the set threshold
(skipThresh), a skip flag is sent for that depth block.
Therefore, to reduce the metadata bitrate, a skip flag is
sent for the parent block (subblocks are also skipped).
Additionally, dMin and dMax values can be quantized
with the provided width of quantization levels
(quantWidth).

4 | EXPERIMENTS

4.1 | Methodology

All 18 configurations of block splitting (Table 1) were
evaluated under common test conditions (CTC) for MIV
[23] on a test set containing 15 miscellaneous test
sequences, including 9 computer-generated (CG)
sequences (Figure 6) and 6 sequences with natural
content (NC) captured by real multicamera systems
(Figure 7). The sequences differ in scene characteristics,
camera arrangement (linear, planar, and spherical), and
camera type: 5 omnidirectional sequences with views
represented in equirectangular projection (ERP) and
10 sequences with typical perspective views.

As the name indicates, the feature-driven DSDE
approach requires the depth estimation process to be

conducted at the decoder side. Therefore, all tested con-
figurations were compared against the DSDE anchor in
CTC called “G17 anchor.” The G17 anchor was generated
using the GA profile of the MIV standard [9] and the test
model for MIV 8 (TMIV 8) [24]. When using the GA pro-
file, the MIV encoder selects a subset of input views to
decrease the total bitrate and pixel rate [25] of the trans-
mitted video. Then, the selected views are concatenated
to decrease the number of video streams and encoded
using VVC (or another video encoder, as the MIV is
codec-agnostic). The input views are restored from

F I GURE 5 Idea of recursive block splitting. Orange: first split

(128 � 128 ≥ 64 � 64) as in Clare et al. [21]; additional recursive

splits: second (yellow), third (green), and fourth (blue)

TAB L E 1 Tested configurations

Block split types Max/min block size

Quad only 128/64a 128/16 128/8

64/32a 64/16 64/8

Quad + symmetrical rectangle 128/64 128/16 128/8

64/32 64/16 64/8

Quad + symmetrical & asymmetrical rectangle 128/64b 128/16 128/8

64/32b 64/16 64/8

aState-of-the-art approach described in Garus et al. [12] and Clare et al. [27].
bState-of-the-art approach [21] adapted by the ISO/IEC WG4 MPEG VC group for the MPEG Immersive video SEI message (Annex F.2.6 of [28]).

F I GURE 6 Computer-generated sequences. Left column:

ClassroomVideo, Hijack, Kitchen, Fan, Group, and Mirror; right:

Museum, Chess, and ChessPieces

4 SZYDEŁKO ET AL.

decoded VVC bitstreams at the decoder side. Then, they
are used for depth estimation. This step is performed
using Immersive Video Depth Estimation (IVDE) [26],
the publicly available depth estimation method that
became the MPEG reference software and that is com-
monly used in MIV-related experiments.

According to the MIV CTC [23], for each sequence,
the video streams were encoded using VVC with five QP
values to obtain the rate-distortion (RD) curve, pre-
senting the dependency between bitrate and quality. The
exact values of QP used for each sequence are available
in the MIV CTC document [23]. The QP values were
selected by the ISO/IEC WG4 MPEG VC group to repre-
sent the useful range of bitrates, which can be used in

practical commercial systems: from 5 to 50 Mbps. For the
convenience of the readers, the used QP values are pres-
ented in Table 2.

As presented in Table 1, the influence of four parame-
ters was evaluated in the experiments: max block size,
min block size, rectangular block split enabling, and
enabling of asymmetrical splitting. Other parameters of
the feature-driven DSDE were common for all
configurations:

• skipThresh¼ 2%,
• splitThresh¼ 2562,
• quantWidth¼ 256:

The two main purposes of the feature-driven DSDE are
to increase coding efficiency and to decrease decoding
time (including the time required for depth estimation).
Therefore, for the evaluation of the tested configurations,
the following three parameters were considered:

• quality of synthesized views (estimated by PSNR met-
ric by comparing input and colocated views synthe-
sized using the decoded bitstream),

• bitrate (the total bitrate of all video streams, MIV
metadata, and encoder-derived features),

• decoding time (calculated as a percentage of time
needed for the decoding of the G17 anchor).

The configurations are denoted as follows:
TYPE�GS�RL, where GS is the initial grid size, RL is
the number of recursion levels, and TYPE is one of three
considered block split types: Q is only quad splitting, S is
quad + symmetrical rectangular splitting, and A is for
square + all rectangular splitting. For example, Q-128-3
means the configuration with no rectangular splitting,
initial grid 128 � 128, and three recursion levels. Thus,
the minimum size of the block is equal to 16 � 16 pixels.

4.2 | Experimental results

The experimental results are divided into four subsec-
tions. In Section 4.2.1, the comparison of all tested config-
urations is presented. Sections 4.2.2 to 4.2.4 present the
influence of single tested parameters: maximum block
size (Section 4.2.2), minimum block size (Section 4.2.3),
and the allowance of rectangular splitting (Section 4.2.4).

4.2.1 | Full results

Three figures in this subsection contain scatterplots pre-
senting the dependencies between three considered

F I GURE 7 Natural sequences. Left column: Frog, Hall, and

Painter; right: Fencing, Carpark, and Street

TAB L E 2 Used QP values for five rate points

Test sequence R1 R2 R3 R4 R5

ClassroomVideo 29 31 36 43 50

Museum 39 46 49 50 51

Hijack 18 21 26 31 35

Kitchen 26 31 35 39 43

Chess 23 28 32 37 42

Painter 23 28 34 37 41

Frog 29 31 34 39 44

Carpark 21 23 28 32 35

Fencing 21 24 26 29 34

Hall 12 15 17 20 25

Street 21 23 25 30 35

Fan 29 30 33 39 46

Group 28 32 36 40 46

ChessPieces 22 27 33 39 45

Mirror 25 31 36 42 48

SZYDEŁKO ET AL. 5

parameters: decoding time, bitrate, and quality. Decoding
time and bitrate were averaged over all 15 sequences.
Quality was averaged over all sequences and views.
Moreover, as the decoding time and quality for each
sequence were measured five times (for five different QP
values), these parameters were averaged over all five
QPs. The bitrates presented in this subsection do not
include the bitrate of video streams. However, they
include only the bitrate of the features as this bitrate is
independent of QP.

As shown in Figure 8, configurations with more
recursion levels (a smaller minimum size of the block;
that is, the min block size is equal to 8) require a much
higher bitrate than configurations with bigger blocks
do. Such a relationship is expected because for configura-
tions with smaller blocks, the number of blocks is large
(compare Figures 4B,C), and for every block B, two fea-
tures (dMinB and dMaxB), and several flags have to be

sent in metadata. However, smaller blocks allow
obtaining better quality of synthesized views. This is
because they better adapt to the edges within depth maps
(cf. Figure 4), simplifying the process of depth estimation.

When analyzing the dependency between quality and
decoding time (Figure 9), recursive configurations with
smaller min block sizes perform better than nonrecursive
ones. As mentioned earlier, using smaller blocks allows
the feature extractor to better adapt to the edges of the
objects in the depth maps as the majority of the blocks
contain pixels from a single object, and the difference
between the nearest and farthest depths within many
blocks is small. In this case, for a large part of the scene,
the depth estimator does not need to analyze a high num-
ber of depth levels (being constrained to a narrow range
between dMinB and dMaxB), which decreases the compu-
tational time required for depth estimation.

Figure 10 shows the dependency between bitrate and
decoding time. As shown in the figure, additional split
types (symmetrical and asymmetrical rectangular) also
decrease the computational time while preserving similar
decoding time. Such a difference can be spotted for all
block sizes, but it is more visible for the nonrecursive sce-
nario. This is because in nonrecursive configurations, the
grid consists of only square blocks that do not fit the
edges within depth maps. Meanwhile, edge adaptation is
better when rectangular splitting is allowed. In recursive
configurations, each block can be split many times, so
even quad (square) splitting allows the feature extractor
to fit into the depth edges.

4.2.2 | Influence of the initial grid size

The results presented in the previous subsection were
averaged over all QPs to obtain a single PSNR value for

F I GURE 8 Bitrate of extracted features (averaged over all

sequences and views) versus PSNR of synthesized views (averaged

over all sequences, views, and QPs) for 18 tested configurations;

state-of-the-art approaches: Q-128-1 and Q-64-1 [12] and A-128-1

and A-64-1 [21]

F I GURE 9 Decoding time versus PSNR of synthesized views

(both values are averaged over all sequences, views, and QPs) for

18 tested configurations; state-of-the-art approaches: Q-128-1 and

Q-64-1 [12] and A-128-1 and A-64-1 [21]

F I GURE 1 0 Bitrate of extracted features (averaged over all

sequences and views) versus decoding time (averaged over all

sequences, views, and QPs) for 18 tested configurations; state-of-

the-art approaches: Q-128-1 and Q-64-1 [12] and A-128-1 and

A-64-1 [21]

6 SZYDEŁKO ET AL.

each tested configuration. However, as mentioned in
Section 4.1, VVC encoding was repeated five times with
different values of QP to allow the analysis of the RD
curves.

Figure 11 shows the RD curves obtained for two non-
recursive configurations, with only quad (square) split
allowed. The orange curve represents the results obtained
for a smaller initial grid size (64 � 64), whereas the blue
curve represents the grid size of 128 � 128 pixels. The
bitrates shown in Figure 11 are much higher than the
bitrates in Figures 8 and 10. This is because the total
bitrate includes the features, video streams, and MIV
metadata.

As shown in Figure 11, both configurations can be
efficiently used in practical immersive video systems, but
each configuration should have different applications.
Bigger blocks require fewer data to be sent. Thus, they
can be used in low-bitrate systems. However, smaller
blocks increase the quality of depth maps (Figure 12) and

synthesized views (Figure 13), which compensates for the
increased bitstream for high-bitrate systems. Moreover,
as presented in Table 3, usage of a smaller initial grid size
significantly decreases the time of depth estimation and
the entire decoding process.

4.2.3 | Minimum block size

The second considered parameter was the minimum
size of the block (or the number of recursion levels).
Therefore, to investigate the influence of this parameter
on coding efficiency, three configurations were com-
pared. Only quad (square) splitting was allowed, and
the initial grid size was set to 64 � 64 pixels. One of
the tested configurations was nonrecursive (with the
minimum block size equal to 32 � 32), and two were
recursive with block sizes of 16 � 16 and 8 � 8, respec-
tively. Figure 14 shows that the relationship between

F I GURE 1 1 RD curves obtained for different initial sizes of

the block grid: 128 � 128 (blue) and 64 � 64 (orange); no recursion,

no rectangular splitting; results averaged over all test sequences;

both curves present the results of the state-of-the-art approach

F I GURE 1 2 Comparison of tested configurations; fragment of

the estimated depth map (fragment colocated to the fragment of the

input view presented at the top); sequence Kitchen

F I GURE 1 3 Comparison of tested configurations; fragment of

the virtual view synthesized based on calculated depth maps

(fragment colocated to the fragment of the input view presented at

the top); please note that the ghosting artifacts at the view are

presented at the left

TABL E 3 Comparison of decoding times for two

configurations with different initial grid sizes

Video type

Configuration

Q-128-1 Q-64-1

ERP 75% 64%

Perspective 64% 55%

CG 63% 56%

NC 74% 62%

Average 67% 58%

Note: Presented as a percentage of the decoding time of the G17 anchor [23].

SZYDEŁKO ET AL. 7

coding efficiency and minimum block size is similar to
the relationship for the initial grid size. Using a smaller
number of blocks (no recursion, min block size:
32 � 32), the total bitrate is smaller, making it the best
choice for low-bitrate systems. When higher bitrates are
allowed, more recursion levels (and smaller blocks)
become more effective because they allow obtaining
better synthesis quality.

On average, the configuration Q-64-2 outperforms
Q-64-1 when more than 20 Mbits per second are used. A
configuration with a min block size of 8 � 8 (Q-64-3,
three recursion levels) requires higher bitrates to out-
perform two configurations with fewer recursion levels.

The use of more recursion levels increases the objective
and subjective qualities of depth maps and synthesized
virtual views (Figures 15 and 16).

Table 4 shows that smaller (better-suited) blocks
decrease the decoding time, especially for NC. The reason
for the discrepancy between CG and NC is simple. For
CG, the depth maps are more stable in time. By contrast,
the depth maps of NC are algorithmically estimated using
input views; thus, they can contain temporal instabilities.
When the depth map is temporally stable, many blocks
in consecutive frames are skipped (skip_flag¼ 1), and
depth estimation is not performed for them. Therefore,
the size of the blocks does not significantly affect the
decoding time for frames other than the first one. For
inconsistent depth maps, depth estimation is performed
for the higher number of blocks in all frames; thus, the
usage of smaller blocks decreases the decoding time
even more.

I G URE 1 4 F RD curves obtained for different minimum sizes

of the block: 32 � 32 (one splitting level, blue line), 16 � 16 (two

splitting levels, orange line), and 8 � 8 (three splitting levels, gray

line); initial grid size: 64 � 64, no rectangular splitting; results

averaged over all test sequences; Q-64-1 is the state-of-the-art

approach [12]

F I GURE 1 5 Comparison of tested configurations; fragment of

the estimated depth map (fragment colocated to the fragment of the

input view presented at the top left); sequence Museum

F I GURE 1 6 Comparison of tested configurations; fragment of

the virtual view synthesized based on calculated depth maps

(fragment colocated to the fragment of the input view presented at

the top left)

TABL E 4 Comparison of decoding times for three

configurations with different minimum block sizes

Video type

Configuration

Q-64-1 Q-64-2 Q-64-3

ERP 64% 64% 64%

Perspective 55% 51% 49%

CG 56% 54% 54%

NC 62% 56% 53%

Average 58% 55% 54%

Note: Presented as a percentage of the decoding time of the G17 anchor [23].

8 SZYDEŁKO ET AL.

4.2.4 | Allowance of rectangular splitting

In the third experiment, the dependency between coding
efficiency and allowance of rectangular splitting was
examined. Figure 17 compares the three configurations:
only quad splitting (“Q,” blue line), quad + symmetrical
rectangular splitting (“S,” orange line), and all possible
split types (“A,” gray line). All tested configurations
shared a common initial grid size (64 � 64) and the num-
ber of split levels (3).

In terms of RD curves, “A” configuration with all pos-
sible splitting types outperforms other configurations by
significantly decreasing the bitrate required for sending
features. Both configurations with no asymmetrical split-
ting (“Q” and “S”) have similar performance, and the
results are almost indistinguishable. The objective and
subjective qualities are similar for all tested configura-
tions, for depth maps and synthesized virtual views
(Figures 18 and 19).

However, even if the allowance of the symmetrical
rectangular splitting does not improve coding efficiency
in terms of bitrate and quality, it decreases the computa-
tional time of the decoding process (on average by 3 per-
centage points, as shown in Table 5). The addition of
asymmetrical rectangular splitting further decreases the
decoding time, but the gain is less noticeable.

Therefore, to illustrate the relationship between cod-
ing efficiency and splitting type, all three splitting config-
urations were compared for the recursive and
nonrecursive scenarios, with one and three split levels,
respectively. As previously stated, three coding efficiency
parameters were examined: quality of synthesized views
(Figure 20), bitrate (Figure 21), and decoding time
(Figure 22). All presented results were averaged over all
tested QP values.

F I GURE 1 7 RD curves obtained for different split types: only

quad (blue), quad + symmetrical rectangular (orange), and all split

types (gray); initial grid size: 64 � 64, number of split levels: 3;

results averaged over all test sequences

F I GURE 1 8 Comparison of tested configurations; fragment of

calculated depth map (fragment colocated to the fragment of the

input view presented at the top); sequence Carpark

F I GURE 1 9 Comparison of tested configurations; fragment of

the virtual view synthesized based on calculated depth maps

(fragment colocated to the fragment of the input view presented at

the top left)

TABL E 5 Comparison of decoding times for three

configurations with different splitting types

Video type

Configuration

Q-64-3 S-64-3 A-64-3

ERP 64% 62% 60%

Perspective 49% 46% 45%

CG 54% 52% 52%

NC 53% 50% 47%

Average 54% 51% 50%

Note: Presented as a percentage of the decoding time of the G17 anchor [23].

SZYDEŁKO ET AL. 9

Figure 20 shows that the gain of using rectangular
splitting highly depends on the number of split levels.
For the nonrecursive scenario, both rectangular split
types increase the quality of synthesized views, but the
difference is negligible.

In the recursive approach, the “S” configuration has
a similar performance to configuration “Q” with quad
splitting only. The configuration with all split types
decreases the synthesis quality because of the minimum
size of the block. In configurations “S” and “Q,” the
minimum width or height of the block, which was split
three times, is 8 pixels (8 = 64 � ½ � ½ � ½). In the
asymmetrical approach, the edge of the block may be
shorter, down to 1 pixel, if the smallest of two sub-
blocks is recursively asymmetrically split three times
(1 = 64 � 1/4 � 1/4 � 1/4). In such a case, the shorter edge
of the block is smaller than the typical size of super-
pixels [29] used in the depth estimator (ie., in IVDE
software [26]), which may cause the wrong estimation
of depth for these areas.

However, even the highest loss of the quality may be
negligible because it is, on average, smaller than 0.1 dB
(Figure 20).

The influence of the splitting type on bitrate also
depends on the number of recursion levels (Figure 21).
When no recursion is used and when each block can be
split only once, usage of rectangular splitting slightly
increases the bitrate (compared to quad split only). This
is because an increase in metadata is needed to signal the
splitting type.

In the recursive scenario, the symmetrical rectangular
splits slightly increase the bitrate for the same reasons as
in the nonrecursive one. However, the influence of asym-
metrical splitting is opposite, and it significantly
decreases the bitrate. This discrepancy was expected as
asymmetrical rectangular splitting fits into the edges in
the depth map faster than both symmetrical splitting
types (Figure 23). Therefore, fewer splits are needed to fit
into the depth edges on average. Thus, fewer blocks are
used, and fewer features have to be sent.

The last considered parameter was the decoding time.
For this parameter, the results are similar to recursive
and nonrecursive scenarios (Figure 22). Generally, rect-
angular splitting allows the additional decrease of the
computational time of the decoder compared to quad
splitting only.

F I GURE 2 0 Quality gain for different splitting types (vs. quad

split only); in a nonrecursive scenario (top) and recursive scenario

(bottom); results averaged over all sequences (AVG), all

omnidirectional sequences (ERP), all perspective sequences

(Perspective), all computer-generated sequences (CG), and all

natural sequences (NC); A-64-1 is the state-of-the-art-approach [21]

F I GURE 2 1 Bitrate change for different splitting types

(vs. quad split only); in a nonrecursive scenario (top) and

recursive scenario (bottom); results averaged over all sequences

(AVG), all omnidirectional sequences (ERP), all perspective

sequences (Perspective), all computer-generated sequences (CG),

and all natural sequences (NC); A-64-1 is the state-of-the-art-

approach [21]

10 SZYDEŁKO ET AL.

5 | CONCLUSIONS

The paper proposes a new approach for deriving depth
map features that enhances the performance of decoder-
side depth estimation. In the state-of-the-art method,
depth features (ie., the nearest and farthest depth values
and the flag describing the temporal stability of depth)
are derived for blocks of a fixed size (eg., 64 � 64 pixels),
which can be split only once to better fit the edges within
the depth map.

In the proposed approach, splitting is not constrained,
and the block grid can be better adapted to the edges due
to the allowance of further splitting of already split
blocks. Such an approach requires sending more features,

thus increasing the total bitrate. However, it significantly
decreases the computational time of the decoder and
further increases the quality of synthesized virtual views.

Therefore, comprehensive experiments were per-
formed to present the advantages of the proposed
approach. In the experiments, 18 recursive and non-
recursive configurations were evaluated to investigate the
influence of the configuration of feature extraction on cod-
ing efficiency, including three crucial parameters: quality,
total bitrate, and decoding time. These experiments are
the first comprehensive test of the GA profile from the
incoming MIV in the feature-driven configuration.

The experimental results showed that various use
cases require different approaches. For low-bitrate
immersive video systems, where the bitrate has to be
optimized, the nonrecursive approach performed better
because of the smaller feature metadata bitstream. How-
ever, in practical systems, where the decoding process
has to be performed in real time and the quality of syn-
thesized views has to be as high as possible, the proposed
recursive block splitting outperformed the state-of-the-art
approach.

ACKNOWLEDGEMENT
This work was supported by the Institute of Information
& Communications Technology Planning & Evaluation
(IITP) grant funded by the Korea government
(MSIT) (No. 2018-0-00207, Immersive Media Research
Laboratory).

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest.

ORCID
Adrian Dziembowski https://orcid.org/0000-0001-7426-
3362

REFERENCES
1. M. Doma�nski, O. Stankiewicz, K. Wegner, and T. Grajek,

Immersive visual media—MPEG-I: 360 video, virtual navigation
and beyond, in Proc. Int. Conf. Syst., Signals Image Process.
(Poznan, Poland), July 2017, pp. 1–9.

2. A. Doumanoglou, D. Griffin, J. Serrano, N. Zioulis, T. K. Phan,
D. Jiménez, D. Zarpalas, F. Alvarez, M. Rio, and P. Daras,
Quality of experience for 3-D immersive media streaming, IEEE
Tr. Broadcast 64 (2018), no. 2, 379–391.

3. M. Tanimoto, FTV (free-viewpoint TV), in Proc. IEEE Int. Conf.
Image Process. (Hong Kong), Sept. 2010, pp. 2393–2396.

4. A. Schenkel, D. Bonatto, S. Fachada, H. L. Guillaume, and
G. Lafruit, Natural scenes datasets for exploration in 6DoF
navigation, in Proc. Int. Conf. 3D Immersion (Brussels,
Belgium) Dec. 2018, pp. 1–8.

5. O. Stankiewicz, M. Doma�nski, A. Dziembowski, A. Grzelka,
D. Mieloch, and J. Samelak, A free-viewpoint television system

F I GURE 2 3 Matching of different splitting types to the

vertical edge in the depth map; (A) fragment of the depth map

(64 � 64), (B) quad split (four split levels required), (C) symmetrical

rectangular split (four split levels required), and (D) asymmetrical

rectangular split (two split levels required)

F I GURE 2 2 Decoding time change for different splitting

types (vs. quad split only); in a nonrecursive scenario (top) and

recursive scenario (bottom); results averaged over all sequences

(AVG), all omnidirectional sequences (ERP), all perspective

sequences (Perspective), all computer-generated sequences (CG),

and all natural sequences (NC); A-64-1 is the state-of-the-art-

approach [21]

SZYDEŁKO ET AL. 11

https://orcid.org/0000-0001-7426-3362
https://orcid.org/0000-0001-7426-3362
https://orcid.org/0000-0001-7426-3362

for horizontal virtual navigation, IEEE T. Mult. 20 (2018),
no. 8, 2182–2195.

6. P. Goorts, M. Dumont, S. Rogmans, and P. Bekaert, An
end-to-end system for free viewpoint video for smooth camera
transitions, in Proc. Int. Conf. 3D Imaging (Liege, Belgium),
Dec. 2012, pp. 1–7.

7. D. Mieloch, O. Stankiewicz, and M. Doma�nski, Depth map
estimation for free-viewpoint television and virtual navigation,
IEEE Access 8 (2020), 5760–5776.

8. G. Lafruit, D. Bonatto, C. Tulvan, M. Preda, and L. Yu, Under-
standing MPEG-I coding standardization in immersive VR/AR
applications, SMPTE Motion Imaging J. 128 (2019), no. 10, 33–39.

9. J. M. Boyce, R. Doré, A. Dziembowski, J. Fleureau, J. Jung, B.
Kroon, B. Salahieh, V. K. Vadakital, and L. Yu, MPEG
immersive video coding standard, Proc. IEEE 109 (2021), no. 9,
1521–1536.

10. B. Salahieh, and J. Boyce, MIV geometry absent, ISO/IEC
JTC1/SC29/WG4 MPEG2020/M54874, Online. 2020.

11. K. Müller, P. Merkle, and T. Wiegand, 3-D video representation
using depth maps, Proc. IEEE 99 (2011), no. 4, 643–656.

12. P. Garus, F. Henry, J. Jung, T. Maugey, and C. Guillemot,
Immersive video coding: should geometry information be trans-
mitted as depth maps? IEEE Trans. Circuits Syst. Video
Technol. (2021). https://doi.org/10.1109/TCSVT.2021.3100006

13. P. Garus, J. Jung, T. Maugey, and C. Guillemot, Bypassing
depth maps transmission for immersive video coding, in Proc.
2019 Picture Coding Symp. (Ningbo, China), 2019. https://doi.
org/10.1109/PCS48520.2019.8954543

14. H. Laga, L. V. Jospin, F. Boussaid, and M. Bennamoun,
A survey on deep learning techniques for stereo-based depth
estimation, IEEE Trans. Pattern. Anal. Machine Intell. (2020).
https://doi.org/10.1109/TPAMI.2020.3032602

15. A. Dziembowski, M. Doma�nski, A. Grzelka, D. Mieloch,
J. Stankowski, and K. Wegner, The influence of a lossy
compression on the quality of estimated depth maps, in Proc.
Int. Conf. Syst. Image Process. (Bratislava, Slovakia), 2016.
https://doi.org/10.1109/IWSSIP.2016.7502730

16. D. Mieloch, D. Kl�oska, and M. Wo�zniak, Point-to-block
matching in depth estimation, in Proc. Int. Conf. Central Eur.
Comput. Graph., Visualization Computer Vision, 2021,
pp. 153–144

17. X. He, Q. Liu, and Y. Yang, MV-GNN: multi-view graph neural
network for compression artifacts reduction, IEEE Trans. Image
Proc. 29 (2020), 6829–6840.

18. S. Chen, Q. Liu, and Y. Yang, Adaptive multi-modality residual
network for compression distorted multi-view depth video
enhancement, IEEE Access 8 (2020) 97072–97081.

19. D. Mieloch, A. Dziembowski, and M. Doma�nski, Depth map
refinement for immersive video, IEEE Access 9 (2021)
10778–10788.

20. B. Szydełko, D. Mieloch, A. Dziembowski, G. Lee, and J. Y.
Jeong, Rectangular blocks in encoder-derived features for
decoder-side depth estimation, ISO/IEC JTC1/SC29/WG4
MPEG2021/M56335, Online, 2021.

21. G. Clare, P. Garus, F. Henry, B. Szydełko, D. Mieloch, A.
Dziembowski, M. Doma�nski, G. Lee, and J. Y. Jeong, [MIV]

Combination of m56626 and m56335 for Geometry Assistance
SEI message, ISO/IEC JTC1/SC29/WG4 MPEG2021/M56950,
Online, 2021.

22. O. Stankiewicz, G. Lafruit, and M. Doma�nski, Chapter 1 - Mul-
tiview video: Acquisition, processing, compression and virtual
view rendering, in Academic Press Library in Signal Processing,
Academic Press, 2018, pp. 3–74. https://doi.org/10.1016/B978-
0-12-811889-4.00001-4

23. Common Test Conditions for MPEG Immersive Video, ISO/IEC
JTC1/SC29/WG4 MPEG2021/N0085, Online, 2021.

24. Test Model 9 for MPEG Immersive Video, ISO/IEC
JTC1/SC29/WG4 MPEG2021/N0084, Online, 2021.

25. A. Hornbarg, Handbook of Machine Vision, Wiley, 2007, pp.
46–47. https://doi.org/10.1002/9783527610136

26. Manual of IVDE 3.0, ISO/IEC JTC1/SC29/WG4
MPEG2020/N0058, Online, 2021.

27. G. Clare, P. Garus, and F. Henry, [MIV] Geometry Assistance
SEI message, ISO/IEC JTC1/SC29/WG4 MPEG2021/M56626,
Online, 2021.

28. Text of ISO/IEC FDIS 23090-12 MPEG Immersive Video,
ISO/IEC JTC1/SC29/WG4 MPEG2021/N0111, Online, 2021.

29. R. Achanta and S. Süsstrunk, Superpixels and Polygons using
simple non-iterative clustering, in Proc. IEEE Conf. Comput.
Vision Pattern Recogn. (Honolulu, HI, USA), July 2017,
pp. 4895–4904. https://doi.org/10.1109/CVPR.2017.520

AUTHOR BIOGRAPHIES

Błażej Szydełko was born in 1997.
He received his BSc degree in ICT
engineering in 2021. He is currently
pursuing his MSc degree at Pozna�n
University of Technology. He com-
bines his studies with work at the
Institute of Multimedia Telecommu-

nications at PUT, where he contributes to the devel-
opment of immersive media technologies within the
ISO/IEC MPEG group.

Adrian Dziembowski was born in
Pozna�n, Poland, in 1990. He received
his MSc and PhD degrees from
Pozna�n University of Technology
(PUT), Pozna�n, Poland, in 2014 and
2018, respectively. Since 2019, he has
been an assistant professor with the

Institute of Multimedia Telecommunications at PUT.
He authored and coauthored about 30 articles on vari-
ous aspects of immersive video, free navigation, and
free-viewpoint television systems. He is also actively
involved in ISO/IEC MPEG activities toward MPEG
Immersive video coding standard.

12 SZYDEŁKO ET AL.

https://doi.org/10.1109/TCSVT.2021.3100006
https://doi.org/10.1109/PCS48520.2019.8954543
https://doi.org/10.1109/PCS48520.2019.8954543
https://doi.org/10.1109/TPAMI.2020.3032602
https://doi.org/10.1109/IWSSIP.2016.7502730
https://doi.org/10.1016/B978-0-12-811889-4.00001-4
https://doi.org/10.1016/B978-0-12-811889-4.00001-4
https://doi.org/10.1002/9783527610136
https://doi.org/10.1109/CVPR.2017.520

Dawid Mieloch received his MSc
and PhD from Pozna�n University of
Technology (PUT), Pozna�n, Poland,
in 2014 and 2018, respectively. Cur-
rently, he is an assistant professor at
the Institute of Multimedia Telecom-
munications at PUT. He is actively

involved in ISO/IEC MPEG activities, where he con-
tributes to the development of immersive media tech-
nologies. He has been involved in several multiview
and 3D video processing projects. His professional
interests include free-viewpoint television, depth esti-
mation, and camera calibration.

Marek Doma�nski received his MSc,
PhD, and Habilitation degrees from
Pozna�n University of Technology,
Poland, in 1978, 1983, and 1990,
respectively. Since 1993, he has been
a professor at Pozna�n University of
Technology, where he leads the Insti-

tute of Multimedia Telecommunications. He
coauthored one of the very first AVC decoders for tv
set-top boxes (2004) and highly ranked technology
proposals to MPEG for scalable video compression
(2004), 3D video coding (2011), and immersive video
coding (2019). He authored three books and over

300 papers in journals and conference proceedings.
The contributions were mostly on image, video, and
audio compression; virtual navigation; free-viewpoint
television; image processing; multimedia systems; 3D
video and color image technology; digital filters; and
multidimensional signal processing.

Gwangsoon Lee received his PhD
degree in electronics engineering
from Kyungpook National Univer-
sity, Daegu, South Korea, in 2004. He
joined the Electronics and Telecom-
munications Research Institute, Dae-
jeon, South Korea, in 2001. He is

currently a principal researcher with Realistic-Media
Research Section. His research interests include
immersive video processing, light field imaging sys-
tem, and three-dimensional video system.

How to cite this article: B. Szydełko, A.
Dziembowski, D. Mieloch, M. Doma�nski, and G.
Lee, Recursive block splitting in feature-driven
decoder-side depth estimation, ETRI Journal (2022),
1–13. https://doi.org/10.4218/etrij.2021-0308

SZYDEŁKO ET AL. 13

https://doi.org/10.4218/etrij.2021-0308

	Recursive block splitting in feature-driven decoder-side depth estimation
	1 INTRODUCTION
	2 FEATURE-DRIVEN DSDE
	3 PROPOSED BLOCK SPLITTING
	4 EXPERIMENTS
	4.1 Methodology
	4.2 Experimental results
	4.2.1 Full results
	4.2.2 Influence of the initial grid size
	4.2.3 Minimum block size
	4.2.4 Allowance of rectangular splitting

	5 CONCLUSIONS
	ACKNOWLEDGEMENT
	 CONFLICT OF INTEREST
	REFERENCES

