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Abstract – This paper focuses on a method to improve the 

quality of the reconstruction of volumetric computer 3-D 

models calculated from multiple camera views. In particular, 

the idea of correcting some internal and external camera 

parameters, in order to obtain the estimated volumetric 

model with improved quality has been proposed. The au-

thors proposed a solution which is built into volumetric 

reconstruction procedures. The proposed approach is based 

on an analysis of histograms of input images and their corre-

sponding images of estimated model reprojection into the 

image planes. The proposed method utilizes cross-correlation 

to estimate corrections and characterizes itself as a non-

optimization approach as opposed to the most common tech-

niques. 

The effectiveness of the proposed approach has been 

tested on a widely used ‘Temple’ model from Middlebury 

dataset. The authors have added a known error values to the 

camera parameters to test the approach. The experimental 

results prove high effectiveness of proposed approach. 
 

Keywords –  voxel reconstruction; camera calibration; histo-

grams of model reprojection; quality improvement; cross-
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I. INTRODUCTION 

 

The reconstruction of  photo-realistic  3-D models of real 

objects from a set of images or a video has become very 

popular in recent times. 3-D computer models of objects 

are key components in many 3-D multimedia systems. 

The quality of these models often has a large impact on 

the acceptability of output product e.g. the objects made 

by three-dimensional printers.  

The most popular methods of the 3-D model objects 

reconstruction based on images are: techniques based on 

the estimation of depth maps from two or more views of 

the object [5,8], reconstructions based on the matching 

characteristic features between the images [9,10] and 

volumetric reconstruction techniques from multiple cam-

era views [6,7]. The authors have focused on this third 

technique of the 3-D model reconstruction. 

During the conducted research on the reconstruction of 

3-D models of objects using volumetric reconstruction 

algorithm, the authors came across a problem with the 

accuracy of the internal and external camera parameters 

and the effect of these parameters on the quality of the 

estimated 3-D model. These camera parameters have a 

significant impact on the quality of the estimated model. 

Camera parameters  given by the content creators: posi-

tion, rotation and zoom of the camera, can have small 

errors, which leads to significant changes in the estimated 

model during the volumetric reconstruction algorithm. In 

many situations it is not possible to measure these pa-

rameters again more precisely, because the content (video 

or images) have already been created and delivered. These 

errors in camera parameters can be observed by compar-

ing one of the input (reference) image with the plane im-

age of the created 3-D model which is back projected to 

that particular view. 

Commonly used method for determining the internal 

and external camera parameters  between all views is a 

global parameters estimation technique - bundle adjust-

ment algorithm. This is an optimization algorithm that 

requires a large set of local features, that are often gener-

ated by scale-invariant feature transform (SIFT [1]). Un-

fortunately, determination of these local features is related 

to the high computational complexity of the process. 

Moreover, it is not always possible to find a sufficient 

number of features for the algorithm to work properly. 

The bundle adjustment algorithm is an iterative algorithm 

that minimizes the global error of the camera parameters, 

using the Levenberg-Marquardt algorithm [2], which itself 

has a high computational complexity. 

In this paper an approach that allows an easy adjust-

ment of the camera parameters estimation has been pro-

posed. The authors proposed the solution which is built 

into volumetric reconstruction procedures instead of glob-

al estimation of camera parameters. Simplicity of this 

solution lies in the use of histograms of images of 3-D 

model reprojection into image plane for determining the 

correction of the camera parameters of rotation and zoom 

of the camera. This method requires a preliminary camera 

parameters which may have a small error. Thus, the inter-

nal and external camera parameters do not need to be 

estimated again, as it is done repeatedly in the bundle 

adjustment algorithm. The proposed approach, compared 

to bundle adjustment algorithm is not iterative, making it 

possible to set the required camera parameters in a very 

short period of time, which is an advantage of the pro-

posed method. 



The solution is not intended to improve the actual 

camera parameters, but only to adjust the parameters of 

those input images that poorly match the model that is 

being reconstructed.  

The paper is organized as follows. Section II presents 

the idea of camera parameters correction using image 

histograms. Firstly, an approach for correcting the rotation 

matrix camera parameters (expressed by the Euler angles: 

α, β and γ) is presented and then the correction of the focal 

length of the camera is presented. Section III presents the 

results of the experiments. Section IV provides a summary 

and a proposal for further work.  

 

II. HISTOGRAM BASED CORRECTION 

 

In our approach we utilize Voxel Reconstruction, also 

known as Voxel Carving algorithm that has already been 

described in [3], specifically we use an approach present-

ed in [4]. Generally it is possible to use any other 3-D 

modelling technique with a requirement that it is able to 

generate a reprojection that correspond to the input image 

to be able to conduct histogram-based correction. Figure 1 

shows parameterization of rotation matrix used in the 

proposed algorithm (usually included in extrinsic rotation 

parameters matrix).  

 

 
 

It is known that given error of a certain parameter will 

result in a known distortions in the model reprojection 

corresponding to the given input image. Figure 2 shows an 

example of resulting distortions in model reprojection 

(Temple – test dataset from [5]). Those distortions were 

best to see on the image histograms (calculated as a sum 

of white pixels either in rows or columns). One may al-

ready see that each parameter error is visible on their 

respective histograms e.g. an error in 𝛼 angle is visible as 

a shift of vertical histogram (rotation invariant), an error 

in 𝛽 angle is visible as a shift of horizontal histogram etc. 

The proposed methods to calculate each parameter correc-

tion are described in details in the following sections. 

 

A. Correction of error in 𝛼 and 𝛽 angles 

 

To calculate the Δ𝛼 angle rotation of i-th input image (i-th 

view), firstly we calculate vertical histograms for both the 

model reprojection image and the i-th input image. Then, 

we calculate cross-correlation between both histograms 

which allows to calculate gap  between them. Finally, we 

utilize the pinhole camera model to calculate the angle 

rotation that corresponds to gap from trigonometric equa-

tion: 

 

Δ𝛼 =  𝑎𝑟𝑐𝑡𝑎𝑛 (
𝑔𝑎𝑝

𝑓
)  (1) 

 

where 𝑓 – focal length, 𝑔𝑎𝑝 – calculated shift of the his-

tograms. 

In case of the horizontal shift calculation that corre-

sponds to a Δ𝛽 angle rotation of i-th input image we fol-

low the steps described for Δ𝛼 calculation but we use 

horizontal histograms instead.  

 

B. Correction of error in 𝛾 angle 

 

To calculate the 𝛾 angle rotation of i-th input image we 

cannot use the histograms mentioned in point A, because 

 

Figure 1. Rotation parameters designation in used  

frame of reference. 

 

 

Figure 3. Visualization of histogram shape variation due to 

the 𝛾 rotation of i-th input image. (a) – vertical histograms, 

(b) – horizontal histograms, (c) – radial histograms depicted 

as a function Distance(angle[rad]). 

 

 

Figure 2. Visualization of known distortion of certain camera 

parameters. In columns: (a) – input image, (b) – reprojection 

with distorted 𝛼, (c) – reprojection with distorted 𝛽,  

(d) – reprojection with distorted 𝑓.  

 

 



as one may have already noticed the point distribution in 

lines has changed dramatically. Figure 3 shows the varia-

tion in histogram shape resulting from Δ𝛾 rotation of input 

image that prevents the use of horizontal and vertical 

histograms in the algorithm .  

This is why, a radial histogram has been used in the 

process of calculating the rotation Δ𝛾 of i-th input image. 

As shown in Figure 3(c), the radial histogram is rotation 

invariant for 𝛾 angle and the rotation is seen as a shift. 

The radial histogram is calculated as a biggest distance of 

an object contour from the camera optical center given in 

pixel coordinates (usually denoted as a pair (𝐶𝑥 , 𝐶𝑦) in the 

intrinsic parameters matrix) in each direction from the 

optical center point (𝐶𝑥, 𝐶𝑦). In our experiments we quan-

tized the directions into 360 intervals.  

At this point the procedure of calculating the Δ𝛾 rota-

tion of i-th input image is conducted in a similar way as 

described in section A. We compute the cross-correlation 

and gap, which describes the quantized rotation Δ𝛾. 

 

C. Correction of focal length 

 

In order to calculate focal length correction Δ𝑓 we need to 

follow a two-step approach, which has been described 

below.  

Firstly, we calculate the radial histograms for both the 

input images  and images of 3-D model reprojection into 

image plane (with input focal length 𝑓1). Then, we calcu-

late their trimmed means 𝑦1, 𝑦3  (also known as truncated 

mean) in order to estimate an average pixel distance 

|𝑦1 − 𝑦3| between the histograms. It is necessary, because 

the correction of parameters is often conducted during the 

reconstruction process therefore there are some voxels 

that has not been carved yet and they add an overflow 

value into the reprojection image histogram. The calculat-

ed trimmed means 𝑦1, 𝑦3 are shown on Figure 4, where a 

pinhole camera model with a highlight of  image plane 𝑌 

and optical axis 𝐹 has been presented.  

 
Secondly, we calculate Δ𝑓 by estimating the focal length 

𝑓3 according to the following equations: 

 

 

{

𝑚: 𝑦𝑃 =
𝑦1

𝑓1

𝑓𝑃 + 𝑦1

𝑛: 𝑦𝑃 =
𝑦2

𝑓2

𝑓𝑃 + 𝑦2

 (2) 

Using (2) we derive an equation for the position of 𝑃: 

 

 
𝑓𝑃 =

(𝑦1 − 𝑦2)𝑓1𝑓2

(𝑦1𝑓2 − 𝑦2𝑓1)
 (3) 

 

where  

 
𝑓2 = 𝑓1 ∗

𝑦1 + 𝑦3

2𝑦1

 (4) 

 

Equation (4) describes a sampling focal length 𝑓2 used to 

generate a help model reprojection, for which we calculate 

a trimmed mean 𝑦2 over its radial histogram. Which is 

used in (5) 

 

 𝑙: 0 =
𝑦𝑃 − 𝑦3

𝑓𝑃

𝑓3 + 𝑦3 (5) 

 

to derive a final equation for desired focal length 𝑓3: 

 

 
𝑓3 =

−𝑦3𝑓𝑃

𝑦𝑃 − 𝑦3

 (6) 

 

 

III. EXPERIMENTS 

 

The experiments has been conducted on a test model 

Temple from the Middlebury dataset [5]. The results have 

been averaged over all 47 views of aforementioned model. 

Each of the parameters error correction (rotation parame-

ters and focal length) has been tested separately. 

Firstly, an undistorted input parameters were taken and 

some of them were modified by a known value. Then a 

voxel reconstruction has been calculated in order to gen-

erate a distorted model. In the next step, an approach de-

scribed in section 2 has been utilized to estimate parame-

ters correction. Finally, the parameters correction was 

evaluated by comparison of the model reprojection image 

with the reference image (input image). They were used to 

calculate the following two metrics: 

 

 
𝑚𝑎𝑡𝑐ℎ =

𝑚𝑢𝑡𝑢𝑎𝑙_𝑎𝑟𝑒𝑎

𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑎𝑟𝑒𝑎
 (7) 

 
𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 =

𝑟𝑒𝑝𝑟𝑜𝑗_𝑎𝑟𝑒𝑎

𝑟𝑒𝑝𝑟𝑜𝑗_𝑎𝑟𝑒𝑎 + 𝑚𝑢𝑡𝑢𝑎𝑙_𝑎𝑟𝑒𝑎
 (8) 

where 𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒_𝑎𝑟𝑒𝑎 is an area of the model in the 

reference image, 𝑚𝑢𝑡𝑢𝑎𝑙_𝑎𝑟𝑒𝑎 is a mutual area of both 

reference and reprojection image and 𝑟𝑒𝑝𝑟𝑜𝑗_𝑎𝑟𝑒𝑎 is an 

area of the reprojection image that is not mutual with 

reference image. The aim of the correction is to reach 

𝑚𝑎𝑡𝑐ℎ = 1 and 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 0. 

It is worth to mention that these two metrics are intro-

duced, because the commonly used method of comparing 

the reconstructed model with a reference model (e.g. the 

one provided along with the input images from Middle-

bury dataset) does not work before reaching the end of 

reconstruction process. 

 

Figure  4. Visualization of 3 reprojection lines 𝑚, 𝑛, 𝑙 that 

cast the point 𝑃 into image plane with respect to 3 focal 

lengths 𝑓1 , 𝑓2, 𝑓3. Visualization of system of equations to 

calculate corrected focal length 𝑓3. 

 

 



 
Reaching the ideal value of 𝑚𝑎𝑡𝑐ℎ = 1 is usually im-

possible due to the fact, that there is a limited number of 

voxels in a given area which is lower than the image reso-

lution. It means that a single voxel reprojection image 

would consist of more than one pixel. It can be interpreted 

as a 3 dimensional quantization error. On the other hand, 

the ideal value of 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 = 0 is usually unreachable, 

because it is calculated throughout the reconstruction 

process while there are still some uncarved voxels as it 

was described in section C. However, the 𝑜𝑣𝑒𝑟𝑓𝑙𝑜𝑤 value 

drops with each input image added to the carving process. 

Finally, it is worth to mention that the approach pre-

sented in this paper works for relatively small angle er-

rors. As one may imagine a shift of  90° in 𝛼 would result 

in shifting the reprojected model out of reprojection im-

age, so the solution works until the object “hits” the image 

boundary. 

IV. CONCLUSIONS 

In this paper, authors showed an approach for improve-

ment of a 3-D voxel model quality based on histograms of 

model reprojection. During the research, the authors no-

ticed the voxel reconstruction’s susceptibility to even the 

smallest parameters variation and have examined their 

influence on the resulting model. 

Based on the experimental results, the authors pro-

posed a non-optimization approach to improve the voxel 

reconstruction quality. The approach utilizes an infor-

mation that the input data for volumetric reconstruction 

may contain some minor errors, that can be corrected 

without the need of using complex methods. The approach 

has been evaluated using the match and overflow metrics, 

that showed its high effectiveness. 

Moreover, an additional experiments concerning com-

binations of errors (e.g. simultaneous 𝛼 and 𝛽 error) have 

been carried out. Firstly, they proved that the proposed 

histograms’ character for their respective angles remain 

invariant from rotation, while retaining information about 

the rotation itself as a shift. Secondly, combinations of 

individual rotation errors shown in Table 1 were success-

fully corrected. However, the research concerning all 

possible combinations requires more work and a separate 

analysis. Lastly, the additional problem of correcting the 

transition matrix parameters ( 𝑋, 𝑌, 𝑍 ) is even more com-

plex as it leads to perspective changes in the reprojection 

image and requires more research as well. 
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TABLE I.  EXPERIMENTAL RESULTS FOR SELECTED 

PARAMETERS. 

 

Parameter 
Before correction After correction 

match overflow match overflow 

𝛼 = 𝛼 − 0.5° 0.9847 0.0925 0.9957 0.0822 

𝛼 = 𝛼 + 0.5° 0.9663 0.1093 0.9951 0.0828 

𝛼 = 𝛼 − 1° 0.9543 0.1208 0.9953 0.0824 

𝛼 = 𝛼 + 1° 0.9244 0.1478 0.9944 0.0833 

𝛼 = 𝛼 − 2° 0.8757 0.194 0.9959 0.0422 

𝛼 = 𝛼 + 2° 0.8465 0.2203 0.9938 0.0841 

𝛽 = 𝛽 − 0.5° 0.9903 0.0865 0.999 0.0787 

𝛽 = 𝛽 + 0.5° 0.8687 0.1992 0.999 0.0792 

𝛽 = 𝛽 − 1° 0.9862 0.0913 0.999 0.0793 

𝛽 = 𝛽 + 1° 0.8035 0.2588 0.9989 0.0782 

𝛽 = 𝛽 − 2° 0.8653 0.2028 0.9981 0.0391 

𝛽 = 𝛽 + 2° 0.678 0.3753 0.999 0.079 

𝛾 = 𝛾 − 5° 0.968 0.1075 0.9969 0.0806 

𝛾 = 𝛾 + 5° 0.9744 0.1015 0.99 0.0871 

𝛾 = 𝛾 − 10° 0.9318 0.1409 0.9969 0.0806 

𝛾 = 𝛾 + 10° 0.9342 0.1387 0.99 0.0871 

𝛾 = 𝛾 − 15° 0.8941 0.1757 0.9969 0.0806 

𝛾 = 𝛾 + 15° 0.8933 0.1865 0.99 0.0873 

𝑓 = 𝑓 − 100 0.9312 0.0161 0.9847 0.0397 

𝑓 = 𝑓 + 100 0.9987 0.1892 0.9834 0.0384 

𝑓 = 𝑓 − 200 0.8165 0.0011 0.9815 0.037 

𝑓 = 𝑓 + 200 0.9925 0.2844 0.939 0.1497 

𝑓 = 𝑓 − 300 0.6985 0.0006 0.9809 0.0362 

𝑓 = 𝑓 + 300 0.9989 0.3575 0.9819 0.0372 

 


