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Abstract: In order to achieve high realism an acceptable level of user experience in immersive videos,
it is crucial to provide both the best possible quality of depth maps and minimize computational
time. In this paper, we propose a new approach to the decoder-side depth estimation (DSDE)
problem, which uses the hierarchical alpha-expansion algorithm with additional improvements for
the estimation designed to be more robust to compressed video artifacts and limited computational
resources. As shown by the experimental results, the proposal simultaneously results in reduction
of computation time of the estimation process (by almost 40%) and an improvement of quality
of estimated depth maps. The increased quality is demonstrated by more than 6% Bjøntegaard
delta gain compared to the Moving Picture Experts Group (MPEG) immersive video state-of-the-art
DSDE method.

Keywords: immersive video; decoder-side depth estimation; graph-cut

1. Introduction

The evolution of immersive video has dramatically enhanced how users interact with
digital content, as new immersive experiences characterized by high levels of realism and
interactivity are presented [1]. In complex immersive video systems, it is necessary to
provide 3D representation of a scene. This is a critical component in achieving realism, as
it is required to render virtual views requested by the viewer [2]. It can be acquired, for
instance, using the depth estimation process or depth cameras [3].

When a larger number of depth maps is sent, the bitrate required to preserve proper
geometry becomes too high, especially for low bitrates (as it can constitute more than 50% of
the whole bitstream [4]). The use of a dedicated codec for depth maps provides satisfactory
results, but such codecs are not standardized and are not sufficiently widespread to be
used in practical cases. To address this, the current state-of-the-art ISO/IEC 23090-12
Moving Picture Experts Group (MPEG) Immersive Video (MIV) coding standard [2] is
codec-agnostic; i.e., it assumes the use of the same internal video compression to encode
texture and geometry.

Compressing depth maps with traditional video encoding methods is also challenging
due to the unique statistical properties of depth maps, which differ significantly from natu-
ral video content [4]. Such traditional video encoding methods struggle to preserve sharp
edges and precise depth information critical for rendering accurate 3D scenes. It can lead
to potential inaccuracies and a diminished user experience in immersive applications [5].

To overcome these challenges, decoder-side depth estimation has been proposed [6]
as one of the types of immersive video coding in which depth information must be recon-
structed from compressed video data. In such an approach, the primary challenge lies in
dealing with compression artifacts and ensuring that depth estimation algorithms operate
effectively within the constraints of minimizing the complexity of the decoding process.
Compression-induced artifacts can impact the quality of the video and, as a result, depth
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estimation accuracy. These errors include the displacement of object edges (which can
lead to inaccuracies in spatial relationships between views) and minimized levels of detail
(which reduces the texture and nuances within the scene, making it challenging to achieve
precise depth estimation) [7].

In the incoming second edition of MIV [8], the depth estimation step is assumed
to simultaneously enhance the quality of a subset of transmitted depth maps as well as
the quality of depth maps estimated for remaining views [9]. This further increases the
importance of providing faster and more reliable depth estimation methods for immersive
video. Unfortunately, conventional depth estimation methods often struggle to provide
high quality in real time, while learning-based methods can be used only for content
captured with a linear arrangement of cameras [4]. Even for such content, studies show
that the quality of depth estimated with learning-based methods for immersive video is
lower than for conventional depth estimators [10].

Graph-cut optimization techniques, particularly the alpha-expansion algorithm, have
shown promise in various computer vision tasks because of their ability to solve pixel
labeling problems efficiently [11]. Graph-cut-based techniques constitute the basis for the
two last reference depth estimation methods of MPEG video coding (i.e., Depth Estimation
Reference Software—DERS [12] and Immersive Video Depth Estimation—IVDE [4]). Un-
fortunately, this step has not been fully optimized for decoder-side depth estimation, where
specific challenges such as compressed video artifacts and limited computational resources
must be addressed. Adapting these techniques to handle the distortions introduced by
compression is crucial for improving depth estimation accuracy in immersive video.

The abovementioned challenges motivated our research presented in this paper. To
provide an initial speed-up of the depth estimation for the immersive video, we have im-
proved IVDE with the use of hierarchical alpha-expansion [13] for faster optimization using
graph-cuts. Unfortunately, as presented in the results of experiments shown in Section 4.2,
estimation is faster at the expense of a slight decrease of depth map quality. Therefore,
using the findings of the previous research on main problems with depth estimation for
immersive video [14,15] and evaluations performed by MPEG Video Coding experts [4],
we introduce two further novel improvements to the hierarchical alpha-expansion method:

• The second cycle label offset introduces a change in the starting point for the second
iteration cycle, effectively narrowing the search space for depth values. This scheme is
designed to leverage the insights gained from the first cycle of graph-cut, effectively
optimizing the selection of depth values for subsequent analysis.

• By including depth values of adjacent segments into optimization, neighboring seg-
ments label examination counteracts the boundary-blurring effects of video compression.

These novel proposals are detailed in Section 3.

2. State of the Art in Alpha-Expansion-Based Graph-Cut Optimization

Depth estimation is often based on minimizing a cost function [11]. Typically, the cost
function can be simplified to

E
(

dp

)
= ∑ p∈PDp

(
dp

)
+ ∑ p∈P∑ q∈QVp,q

(
dp, dq

)
, (1)

where P is the set of all points of the input view, p is a point of the input view, dp is
the currently considered depth of a point p, Dp is the data term that represents the cost of
assigning the depth dp to the point p, Q is the set of points in the neighborhood of the
point p, q is a point in the neighborhood of the point p, dq is the currently considered depth
of a point q, and Vp,q is the smoothness term that represents the intra-view discontinuity
cost of assignment of the depth dp to the point p and depth dq to the point q.

The data term Dp establishes a correspondence between neighboring views, typically
by calculating the sum of absolute differences between color values of point p and its
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corresponding point in a neighboring view for the considered depth dp . This metric can
be replaced or computed within a small window to minimize noise influence [16].

The smoothness term Vp,q deals with surfaces lacking texture. Its discontinuity model
is based on depth similarity:

Vp,q

(
dp, dq

)
= β0·

∣∣∣dp − dq

∣∣∣, (2)

where β0 is the smoothing coefficient provided by the user or calculated from camera
parameters [4], dp is the currently considered depth of a point p, and dq is the currently
considered depth of a point q. This formulation aims to estimate smooth depth on
scene objects. The β0 coefficient sometimes is also dependent on the similarity between
neighboring points p and q [17]. Nevertheless, this way, Vp,q becomes prone to the effects
of compression of input data, as blurred edges in processed video can negatively influence
the accuracy of the performed optimization.

Additional terms can be included in (1) to ensure inter-view [11,15] and temporal [18]
consistencies. A final solution for E

(
dp

)
, i.e., the assignment of one of available depth

values to all points of input views, can be estimated using a relevant optimization method.
One of the most common among these are graph cut-based methods [19], commonly used
for binary problem optimization in image processing. Each image point becomes a node in
a graph, with edges representing the cost function. The algorithm finds the optimal cut,
which assigns nodes to labels in a way that minimizes the cost function.

For multi-label segmentation, solutions are obtained through a series of consecutive
optimizations. As can be seen above, the depth estimation process requires multi-label
optimization, where each depth level is represented as a label.

The two primary methods for minimizing multi-label problems are the alpha–beta
swap and alpha-expansion [19]. In the alpha–beta swap, the graph cut algorithm iterates
through all pairs of labels α and β, resulting in a large number of optimizations (size(d)2)
required. In the alpha-expansion method, during each iteration, the graph cut algorithm
assigns a label α or retains the current label (referred to as a non-α label). For instance,
if points are initially labeled with label ‘0’ in the first iteration, each point in the first
optimization is assigned either label ‘0’ or another label ‘1’. Subsequently, points are
assigned to further labels or retain the previous labeling (i.e., ‘0’ or ‘1’). This method
requires only size(d) iterations.

An example of alpha-expansion-based optimization performed for 8 depth levels is
presented in Figure 1. At the top, the results of each optimization can be seen. The result of
the last optimization (for 7th depth level), enlarged at the bottom, is the final depth map.
After all the iterations are performed, the process of optimization can be performed again,
in the latter cycle of iterations [14], so the ‘final depth map’ (Figure 1) becomes the input to
another optimization.

Not all nodes have to be a part of each iteration. They can be turned off in chosen iter-
ations in order to provide temporal consistency [14], or if some input depth was provided
into the optimization and it should be unchanged during the estimation. Still, these nodes
can influence the depth assigned to other nodes. Therefore, the cost function is

E
(

dp

)
= ∑p ∈ Pon(dp)

Dp

(
dp

)
+ ∑p ∈ Pon(dp) ∑q ∈ Q

⋂
Pon(dp)

Vp,q

(
dp , dq

)
, (3)

where Pon

(
dp

)
is the set of active nodes.
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Figure 1. An example of alpha-expansion-based depth estimation.

Performing the first, coarse optimization leads to an initial, low-detail depth map if
used for geometry estimation (Figure 2A). This rough estimation is the start of the next
cycle of iterations in which the number of labels (depth levels) required to be examined
for each segment is reduced from size(d) to only ±n/2 labels (Figure 2B). Therefore, the
number of pixels active in these iterations is significantly decreased, and their set is

Pon

(
dp

)
=

{
r :

∣∣∣dp − r
∣∣∣ < n

}
. (4)

By leveraging the result of coarse optimization, the algorithm focuses only on the
refinement of previous labeling, reducing unnecessary computations and potentially reach-
ing better solutions. Therefore, this algorithm decreases the complexity of optimization
twofold. Firstly, it limits the number of labels to be analyzed in the first cycle, and secondly,
it optimizes smaller graphs in the second cycle.

As one of the reviews has shown [20], this scheme provides a satisfactory trade-off
between the computational complexity and the resulting quality of depth maps when
compared to other global optimization-based methods. Unfortunately, as our initial ex-
periments have shown (Section 4.2), this scheme results in slight reduction accuracy of
estimated depth maps.
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Figure 2. An example of hierarchical alpha-expansion-based depth estimation. The currently active
nodes are shown as the blue area. (A) First cycle of graph cut (coarse optimization). (B) Second cycle
of graph cut (refinement optimization).
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3. The Proposed Method

This paper presents the results of the first implementation of hierarchical alpha-
expansion [13] for depth estimation performed for immersive video. Moreover, two novel
further improvements of this scheme are proposed, to provide even faster estimation and
improve the quality of depth maps in the demanding task of decoder-side depth estimation.

3.1. Second-Cycle Label Offset

As shown in other works [14], at least two global cycles of graph cut optimization are
required to provide satisfactory quality of estimated depth maps. The second cycle removes
a noticeable number of erroneous values, especially in areas which were occluded in some
views. Fortunately, the increase of quality when the third cycle is used is negligible [14],
so the further increase of optimization time is not required. The necessity of performing a
second cycle was also proven with subjective quality measurements performed by MPEG
Video Coding experts. It led to using two cycles in the evaluations of the DSDE compression
scheme in coding performed by MIV. Therefore, in a hierarchical alpha-expansion approach
used in depth estimation for immersive video, it is also necessary to perform two coarse
global cycles for every n-th of available depth values (so the cycle shown in Figure 2A
is performed twice). Then, refinement iterations examine ±n/2 of adjacent depth values
to the values acquired from the first two cycles. Such a hierarchical scheme is still less
complex than the basic alpha-expansion. Nevertheless, the additional cycle requires a
significant amount of additional time for the depth estimation, which is already the most
time-consuming part of immersive video decoding.

In our proposal, assuming that coarse cycles are done for every n-th of available depth
values, we offset by n/2 the initial depth value from which the second coarse global cycle
is being performed. For instance, if n would be equal to 4, then the second cycle would
start from depth level ‘2′, instead of ‘0′. Therefore, dp in the cycle c is a set defined as

dp ∈
{

{nk : k ∈ N
∧

nk < N} i f c = 0
{nk + n/2 : k ∈ N

∧
(nk + n/2) < N} i f c = 1

(5)

With the proposed second-cycle label offset, the time required to estimate depth is
noticeably decreased. If n is equal to 4, then the number of depth levels to be examined is
the same as it would be for n equal to 2 in traditional approach (as every second depth
label was already examined in two first cycles). Moreover, for n = 2 there is no need
to perform any refinement iterations, as all depth values were already examined for all
segments after two coarse iterations.

Using the offset which is a result of dividing n by odd values (e.g., offset by n/3)
would result in non-optimal depth values to be checked in the second coarse cycle, as
these values would not be evenly distributed between values for the first cycle. It would
negatively influence the refinement cycle, so the values to be checked would not be ±n/2.
For example, for n = 4, {−1, 3}, the largest distance from the initial depth would increase
from 2 to 3. The larger this distance is, the worse the results of the optimization.

In addition, as our results have shown, increasing n negatively influences the quality
of estimated depth maps (Section 4.2). Therefore, this proposal is beneficial both in terms
of the quality and time of estimation, as only a small number of depth values is examined
in refinement cycles. Naturally, these considerations are true only if we assume that the
first two cycles are performed for all depth levels, as was explained at the beginning of
this section.

3.2. Neighboring Segments Label Examination

One of the main issues observed in depth maps, which heavily influences the perceived
quality of final virtual view synthesis, is the displacement of the object boundaries [5]. This
issue is addressed in IVDE by using superpixels [15] in graph-cut optimization instead of
pixels. Superpixels tend to follow the border of objects in encoder-side depth estimation [21].
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Nevertheless, video compression can decrease their sharpness in decoder-side schemes,
making it harder to estimate the proper shape of objects. Depth errors produced at this
stage can propagate throughout the entire sequence, e.g., due to temporal consistency
improvements based on utilizing depth values from previous frames [14]. It significantly
reduces the final quality of virtual views presented to a viewer.

Let us assume that as a consequence of a too-large value of n in the first two coarse
graph-cut cycles, a segment on the edge of the object was incorrectly labeled as having the
depth of the foreground. If the unmodified hierarchical alpha-expansion is used, the error
will be hard to correct in the optimization cycles, as for this segment, only the closest values
of depth will be examined, so the values that represent background will not be proposed.
On the other hand, there is a high probability that, among the neighboring segments, we
can find depth values closer to correct one. Therefore, we propose to also examine depth
values from the neighboring segments in graph-cut refinement cycles thusly:

Pon

(
dp

)
=

{
r :

∣∣∣dp − r
∣∣∣ < n

∧
r = dq

}
. (6)

At the expense of slight increase in the number of depth values to be examined, the
proposal can be used to remove some of incorrectly estimated depth values resulting
from, among other things, object boundary displacements. The basic idea of using the
depth of neighboring segments has already been researched and found to be useful in
depth refinement [22], as it was proven to highly increase the final quality of depth maps.
In our proposal, we incorporate this idea directly into the optimization itself. Such an
approach removes the unnecessary computational overhead required to run additional
refinement after the depth estimation. Reducing this overhead aligns with the requirements
of immersive video coding based on decoder-side depth estimation.

4. Experimental Results

To evaluate the proposal, we compare it with state-of-the-art decoder-side depth
estimation encoding. In total, six different configurations were tested:

(1) basic alpha-expansion,
(2) hierarchical alpha-expansion with optimization step n = 2 (current state of the art

and reference method in MIV experiments)
(3) as in (3), but with n = 4,
(4) proposed hierarchical alpha-expansion with second-cycle label offset with optimiza-

tion step n = 2,
(5) as in (4), but with n = 4,
(6) proposed hierarchical alpha-expansion with second-cycle label offset and neighboring

segments label examination (with n = 4).

4.1. Methodology

We conducted experiments based on the Common Test Conditions (CTC) defined by
ISO/IEC MPEG Video Coding [23]. This helps us to ensure a fair comparison between
different methods for immersive video coding. To carry out the experiments, we used the
TMIV—Test Model for MPEG Immersive Video 16.0 [23]—which is designed to implement
the MPEG Immersive Video coding standard. Used test sequences are listed in Table 1.

For depth estimation performed at the decoder side, we used Immersive Video Depth
Estimation (IVDE [4]), which is used in MIV experiments conducted by ISO/IEC MPEG
Video Coding. We use our modification of publicly available IVDE 8.0. Once depth maps
are estimated, the TMIV renderer is utilized to produce virtual views that are positioned
in the same position as all views of the test sequences used. To measure the quality of
the virtual views in comparison to the real views of the sequences, PSNR and IV-PSNR
metrics [16] are utilized. Eventually, BD-rate (Bjøntegaard delta [24]) is computed to assess
the percentage change in the bitrate required to attain the same quality for the tested
techniques relative to the reference method.
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Table 1. List of test sequences used.

Sequence Source Type Resolution Views

Classroom Video [25] Equirectangular projection Computer generated 4096 × 2048 15

Museum [26] Equirectangular projection Computer generated 2048 × 2048 24

Chess [27] Equirectangular projection Computer generated 2048 × 2048 10

Guitarist [28] Equirectangular projection Computer generated 2048 × 2048 23

Hijack [29] Equirectangular projection Mixed 4096 × 2048 10

Cyberpunk [29] Equirectangular projection Mixed 2048 × 2048 10

Kitchen [30] Perspective, planar Computer generated 1920 × 1080 25

Cadillac [31] Perspective, planar Computer generated 1920 × 1080 15

Mirror [32] Perspective, planar Computer generated 1920 × 1080 15

Fan [33] Perspective, planar Computer generated 1920 × 1080 15

Group [34] Perspective, convergent Computer generated 1920 × 1080 21

Dancing [35] Perspective, convergent Computer generated 1920 × 1080 24

Painter [36] Perspective, planar Natural content 2048 × 1088 16

Breakfast [37] Perspective, planar Natural content 1920 × 1080 15

Barn [38] Perspective, planar Natural content 1920 × 1080 15

Frog [39] Perspective, planar Natural content 1920 × 1080 13

Carpark [40] Perspective, planar Natural content 1920 × 1088 9

Street [40] Perspective, planar Natural content 1920 × 1088 9

Fencing [41] Perspective, convergent Natural content 1920 × 1088 9

CBABasketball [42] Perspective, convergent Natural content 1920 × 1080 34

MartialArts [43] Perspective, convergent Natural content 1920 × 1080 15

The tested methods were also evaluated based on their computational complexity.
These evaluations are presented as a runtime ratio when compared to DSDE, which was
performed without hierarchical alpha-expansion.

4.2. Results

First of all, we establish the performance of the hierarchical alpha-expansion (reference
state-of-the-art method) by comparing it with the basic alpha-expansion. The results
shown in Table 2 indicate that, on average, using hierarchical scheme with the optimization
step equal to 2 decreases the time of decoding (which includes parsing the bitstream,
depth estimation, and virtual view rendering) by almost 20%. On the other hand, the
loss in the quality of estimated depth maps results in 5% of BD-rate loss in both reported
quality metrices.

When the optimization step is equal to 4, further decrease of runtime can be seen
(by another 18%) as well as progressing BD-rate loss (Table 2). This indicates that in
immersive video applications, the state-of-the-art hierarchical alpha-expansion used for
depth estimation cannot be used to further decrease the complexity of a decoder—the
quality losses become too significant to accept.

The proposed second-cycle label offset, as presented in Table 3, overcomes the limita-
tions of the state-of-the-art hierarchical alpha-expansion. If the optimization step is equal
to 2, then the runtime is decreased by more than 40% and the quality is only negligibly
decreased. For the step equal to 4 (Table 3), the quality loss becomes noticeable and the
runtime is longer than in the previous configuration (as the refinement iterations have to
be performed in this scheme).
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Table 2. State-of-the-art hierarchical alpha-expansion with n = 2 (anchor) and n = 4, compared to
basic alpha-expansion.

Sequence

n = 2 n = 4

BD-Rate
Y-PSNR

BD-Rate
IV-PSNR

Decoding and
Rendering
Runtime

BD-Rate
Y-PSNR

BD-Rate
IV-PSNR

Decoding and
Rendering
Runtime

ClassroomVideo −7.1% −2.8% 75.5% 2.8% −0.6% 61.8%
Museum −2.8% −0.9% 108.5% −4.8% −1.3% 93.2%
Chess −99.2% −17.8% 99.8% 19.9% −12.0% 81.3%
Guitarist 13.6% 2.4% 109.8% 76.1% 34.3% 87.6%
Hijack 50.9% 110.6% 95.8% −11.4% 2.0% 86.2%
Cyberpunk −2.4% −0.7% 90.7% 1.6% −3.3% 77.5%
Kitchen 2.5% 2.7% 75.0% 3.8% 2.6% 52.6%
Cadillac −1.2% −0.1% 76.3% 0.1% 1.5% 57.8%
Mirror 1.9% 2.7% 77.1% 2.4% 2.3% 57.4%
Fan −1.5% −0.8% 77.8% −2.0% −1.3% 59.9%
Group 39.7% 31.2% 98.5% 44.3% 21.6% 84.6%
Dancing 3.8% 2.4% 75.9% 7.4% 5.0% 58.6%
Painter 0.6% 1.0% 70.4% 1.7% 1.5% 51.0%
Breakfast −20.4% −12.9% 83.4% −11.2% −6.1% 66.5%
Barn 1.4% −0.8% 77.4% 2.8% −1.4% 54.9%
Frog 0.1% −0.0% 57.6% −0.2% −0.3% 37.7%
Carpark 13.9% 7.9% 78.0% 8.3% 5.7% 55.6%
Street 2.3% 0.4% 68.6% 17.0% 11.3% 53.0%
Fencing 49.9% 20.8% 66.9% 147.7% 71.3% 43.8%
CBA Basketball −5.3% −60.1% 79.9% 2.9% −0.2% 62.7%
MartialArts 67.1% 19.7% 89.8% 56.7% 81.8% 68.4%
Average 5.1% 5.0% 82.5% 17.4% 10.2% 64.4%

BD-Rate change higher than 3% was highlighted in red (for efficiency loss) or green (for efficiency gain). Decoding
and Rendering Runtime was highlighted in green if it was smaller than 90%.

Nevertheless, turning on neighboring segment label examination (Table 4) significantly
improves the quality, even over the configuration without hierarchical alpha-expansion
(gain of 6.6% for IV-PSNR-based BD-rate).

The results show that it is not optimal to examine all depth levels, as is done in
hierarchical alpha-expansion with second-cycle label offset with step 2. It is better to first
provide a coarse proposal of the depth map and then refine it only with depth levels that
are more probable (i.e., the neighboring depth levels and depth levels from neighboring
segments). This scheme is the only one that provides quality gain, and, moreover, the
runtime is still one of the shortest of all (only 5% longer than the fastest scheme)

The comparison of estimated depth maps is visualized in Figures 3 and 4. As can be
seen, most of the differences between depth maps are present on the edges of objects.

Table 3. Hierarchical alpha-expansion with second-cycle label offset with n = 2 and n = 4, compared
to basic alpha-expansion.

Sequence

n = 2 n = 4

BD-Rate
Y-PSNR

BD-Rate
IV-PSNR

Decoding and
Rendering
Runtime

BD-Rate
Y-PSNR

BD-Rate
IV-PSNR

Decoding and
Rendering
Runtime

ClassroomVideo −7.3% −4.6% 66.5% −5.7% −3.5% 60.1%
Museum −6.5% −2.1% 57.6% −3.5% −1.1% 91.5%
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Table 3. Cont.

Sequence

n = 2 n = 4

BD-Rate
Y-PSNR

BD-Rate
IV-PSNR

Decoding and
Rendering
Runtime

BD-Rate
Y-PSNR

BD-Rate
IV-PSNR

Decoding and
Rendering
Runtime

Chess −9.3% −13.0% 59.0% −7.9% −4.2% 77.8%
Guitarist −0.4% 1.3% 53.2% 26.5% 34.0% 86.3%
Hijack 45.3% 40.2% 65.3% 26.4% −43.0% 78.7%
Cyberpunk −7.3% −5.0% 57.7% −6.1% −2.8% 71.2%
Kitchen 1.1% 0.3% 56.5% 1.9% 1.4% 51.8%
Cadillac 0.3% 1.1% 54.8% −0.4% 1.1% 54.4%
Mirror 1.2% 1.8% 56.7% 2.6% 2.6% 55.8%
Fan 0.1% 0.7% 53.8% −2.2% −0.9% 54.9%
Group 40.4% 31.0% 58.2% 31.1% 124.6% 77.6%
Dancing 3.7% 2.4% 58.1% 5.5% 3.5% 55.1%
Painter 0.5% 0.6% 57.9% 0.7% 0.0% 45.4%
Breakfast −8.2% −5.2% 57.9% −12.9% −7.1% 60.7%
Barn 3.3% 0.3% 59.6% 1.4% −1.1% 55.5%
Frog 0.2% 0.2% 50.3% 0.2% 0.1% 33.7%
Carpark 12.0% 7.8% 56.7% 15.7% 10.4% 53.8%
Street −1.3% −1.3% 57.2% 3.3% 0.7% 49.9%
Fencing −1.1% −3.3% 56.9% 45.9% 18.3% 41.0%
CBA Basketball −25.4% −27.0% 57.2% −4.3% −9.3% 59.7%
MartialArts −7.6% −10.8% 54.3% 32.9% 4.4% 64.2%
Average 1.6% 0.7% 57.4% 7.2% 6.1% 60.9%

BD-Rate change higher than 3% was highlighted in red (for efficiency loss) or green (for efficiency gain). Decoding
and Rendering Runtime was highlighted in green if it was smaller than 90%.

Table 4. Hierarchical alpha-expansion with second-cycle label offset and neighboring segments label
examination with n = 4 compared to basic hierarchical alpha-expansion.

Sequence BD-Rate
Y-PSNR

BD-Rate
IV-PSNR

Decoding and
Rendering
Runtime

ClassroomVideo −5.6% −2.9% 60.2%
Museum −3.7% −1.0% 89.9%
Chess −14.5% −5.2% 80.1%
Guitarist −8.9% −89.1% 88.8%
Hijack 6.6% 25.4% 78.8%
Cyberpunk −9.7% −6.6% 69.8%
Kitchen 2.3% 1.3% 51.4%
Cadillac 0.8% 1.8% 57.8%
Mirror 2.3% 2.3% 57.1%
Fan −2.9% −1.3% 57.3%
Group −1.3% −27.4% 78.6%
Dancing 1.3% 1.5% 56.8%
Painter 2.4% 2.3% 45.6%
Breakfast −16.3% −8.5% 63.5%
Barn 2.0% 0.2% 58.0%
Frog 0.2% 0.3% 36.6%
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Table 4. Cont.

Sequence BD-Rate
Y-PSNR

BD-Rate
IV-PSNR

Decoding and
Rendering
Runtime

Carpark 10.8% 6.5% 55.1%
Street 3.4% 0.5% 51.4%
Fencing 15.8% 8.2% 41.3%
CBA Basketball −19.4% −21.9% 61.3%
MartialArts −28.7% −25.0% 65.9%
Average −3.0% −6.6% 62.2%

BD-Rate change higher than 3% was highlighted in red (for efficiency loss) or green (for efficiency gain). Decoding
and Rendering Runtime was highlighted in green if it was smaller than 90%.Appl. Sci. 2024, 14, x FOR PEER REVIEW 10 of 14 
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Figure 3. The comparison of depth maps estimated for the MartialArts sequence. Depth maps
estimated using graph-cut optimization with: (A) alpha-expansion, (B) hierarchical alpha-expansion
(n = 2), (C) hierarchical alpha-expansion (n = 4), (D) hierarchical alpha-expansion with second-cycle
label shift (n = 2), (E) hierarchical alpha-expansion with second-cycle label shift (n = 4), (F) hierarchi-
cal alpha-expansion with second-cycle label shift and neighboring segments label examination.
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5. Conclusions

This paper presents a novel hierarchical alpha-expansion-based graph-cut optimiza-
tion technique for decoder-side depth estimation in immersive video applications. Our
approach significantly enhances the computational efficiency and accuracy of depth map
estimation, addressing the critical challenges of rendering high-quality immersive videos.
Through comprehensive experimentation, we have demonstrated that our method outper-
forms the state-of-the-art technique, in terms of both depth accuracy and computational
load, making it a viable solution for more practical immersive video applications. The pro-
posal is particularly relevant for streaming immersive content to resource-limited receivers,
where optimizing decoder-side computations is crucial for a user experience.

The experimental results have shown that examining selected, more plausible depth
levels provides more accurate estimation than examining all available labels. Therefore,
future directions for research can include exploring adaptive hierarchical structures that
can dynamically adjust based on content complexity and computational complexity con-
straints (such as the number of CPU cores or the size of RAM available in the decoder). In
conclusion, the hierarchical alpha-expansion-based graph-cut optimization presents a sig-
nificant step forward in the research on using decoder-side depth estimation for immersive
video compression.
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