
INTERNATIONAL ORGANISATION FOR STANDARDISATION

ORGANISATION INTERNATIONALE DE NORMALISATION

ISO/IEC JTC1/SC29/WG11

CODING OF MOVING PICTURES AND AUDIO

ISO/IEC JTC1/SC29/WG11

MPEG2018/m41990

January 2018, Gwangju, Korea

Source Poznań University of Technology

Status Input

Title Extended VSRS for 360 degree video

Author Marek Domański, Dominika Łosiewicz, Tomasz Grajek, Olgierd Stankiewicz,

Krzysztof Wegner, Adrian Dziembowski, Dawid Mieloch

1. Introduction

Omnidirectional video formats natively provide capability of changing direction of viewing but

not the position of viewing. Such capability, of changing also the position of viewing, is key for

the prospective Omnidirectional 6DoF/3DoF+ video technology.

In one of the previous input documents [1] we have shown that it is possible to render

additional omnidirectional view of the scene from monoscopic or stereoscopic omnidirectional

video accompanied by omnidirectional depth. Up to now several custom applications for

omnidirectional rendering have been demonstrated [5,6,7,8].

In this document we present extension of View Synthesis Reference Software towards

omnidirectional virtual view rendering.

2. Omnidirectional virtual view synthesis

2.1. Algorithm
The goal of the omnidirectional virtual view synthesis is to create omnidirectional virtual

viewpoint in any position in the space, different from position of input viewpoint, e.g. translated

by vector T. The created virtual viewpoint needs to look like directly captured with 360 degree

camera. View synthesis can use only as few as one input omnidirectional video accompanied

with omnidirectional depth (OVD), or more. In the current version of the presented software, we

provide support for up to two one input omnidirectional video accompanied with omnidirectional

depth (OVD).

Figure 1. Omnidirectional virtual viewpoint rendering.

There are many ways to map omnidirectional video to rectangular video [2]. One of the most

popular in the literature is equirectangular projection format (ERP). In this work, we assume that

both input omnidirectional views and the requested virtual viewpoint use equirectangular

projection.

In order to create virtual viewpoint, each pixel in each input omnidirectional view needs to be

mapped to appropriate position in virtual viewpoint. At first, 3D location of each pixel has to be

obtained.

For every pixel (𝑚, 𝑛) in the rectangular input video of size (𝑊, 𝐻) we obtain appropriate

direction (𝜑, 𝜃) in 3D space through (1).

𝜑 = (
𝑚

𝑊
− 0.5) ∙ 2𝜋

𝜃 = (0.5 −
𝑛

𝐻
) ∙ 𝜋

 (1)

From the depth map associated with video, we get depth value for the processed point (𝑚, 𝑛).

Given the depth map format used [4] (e.g. normalized disparity) we can easily calculate distance

𝑧 of the given point from the center of the omnidirectional viewpoint.

For direction (𝜑, 𝜃) and the distance 𝑧, exact 3D position the point can be calculated (2):

𝑋 = 𝑧 ∙ 𝑐𝑜𝑠(𝜃) ∙ 𝑐𝑜𝑠(𝜑)
𝑌 = 𝑧 ∙ 𝑠𝑖𝑛(𝜃)

𝑍 = −𝑧 ∙ 𝑐𝑜𝑠(𝜃) ∙ 𝑠𝑖𝑛(𝜑).

(2)

Next, 3D point is projected onto a virtual viewpoint sphere to create a view for requested

viewpoint. Each 3D point is shifted by translation of virtual view point form input viewpoint

𝑇 = [𝑇𝑥 𝑇𝑦 𝑇𝑧] as expressed in following equation (3):

𝑋′ = 𝑋 + 𝑇𝑥

𝑌′ = 𝑌 + 𝑇𝑦

𝑍′ = 𝑍 + 𝑇𝑧

. (3)

For the obtained position (𝑋′, 𝑌′, 𝑍′) in virtual viewpoint coordinate system, we can calculate

direction (𝜑′, 𝜃′) relative to the virtual viewpoint center (4):

𝜑′ = 𝑡𝑎𝑛−1 (−
𝑍

𝑋
)

𝜃′ = 𝑠𝑖𝑛−1 (
𝑌

√𝑋2 + 𝑌2 + 𝑍2
) .

 (4)

In the end, appropriate pixel position (𝑚′, 𝑛) in the output rectangular video (representing the

virtual viewpoint) can be obtained from direction (𝜑, 𝜃) in 3D space through equation (5):

𝑚′ = (
𝜑′

2𝜋
+ 0.5) ∙ 𝑊

𝑛′ = (0.5 −
𝜃′

𝜋
) ∙ 𝐻.

 (5)

2.2 Implementation in VSRS
Based on a one or two input omnidirectional video and omnidirectional depth in equirectangular

projection format (ERP) new omnidirectional viewpoint is rendered. We have follow general

VSRS design (Fig. 1).

Figure 1. General overview of the algorithm.

Synthesis takes place in two separate processing paths - one per each input view. In each path, at

first the depth map of a rendered omnidirectional virtual view is created in depth synthesis block.

This is performed independently based of both input depth maps. Forward depth warping of each

pixel from input view is used. Next, virtual depth maps are filtered by the same set of processing

filters already present in VSRS. After that, in each path, texture of virtual view is created by

backward warping in view synthesis block. Based on rendered omnidirectional virtual depth map

a texture of a processed input view is being sampled to create a variants of virtual view texture.

The process is ended by application of set of filters already present in VSRS.

Finally, the two variants of texture of virtual views are merged together in view blending

stage. All remaining holes and regions that could not be rendered due to occlusion within the

scene are inpainted in hole filling and inpainting stage.

Only depth synthesis and view synthesis steps have been modified in order to support

omnidirectional view rendering. Rest of the processing pipeline remains unaltered. This means

that all modes of view blending, and hole filling works correctly, and can be used.

2.3. Camera parameters
The camera parameters file in supported in normal format used by VSRS for single view

rendering, for compatibility. Because in the proposed enhanced VSRS 360 video is generated,

most of parameters related to view frustum are not required. Therefore, only camera positions

are taken into consideration. In particular, the difference in camera position between real input

view and virtual view is used.

2.4. Configuration parameters
The following additional configuration parameters have been added for omnidirectional

rendering.

SynthesisMode 2 # 0...General, 1...1D parallel, 2...360 equirectangular

SynthesisMode

Unsigned int (0, 1 or 2), default: 0

Specifies the mode of view synthesis. 0 means the method has no restriction, 1 means the method is only

works on 1D parallel multi-view sequences, 2 means the new proposed 360 degree rendering.

2.5. Exemplary configuration file
#================ Input Parameters ================

DepthType 1 #0...Depth from camera, 1...Depth from the origin of 3D space

SourceWidth 2048 # Input frame width

SourceHeight 1024 # Input frame height

StartFrame 0 # Starting frame #

TotalNumberOfFrames 1 # Total number of input frames

LeftNearestDepthValue 23.344623 # Nearest depth value of left image from camera

LeftFarthestDepthValue 54.470788 # Farthest depth value of left image from camera

RightNearestDepthValue 23.175928 # Nearest depth value of right image from camera

RightFarthestDepthValue 54.077165 # Farthest depth value of right image from camera

CameraParameterFile cam_param.txt # Name of text file which with camera parameters

LeftCameraName param_cam001 # Name of real left camera

VirtualCameraName param_cma002 # Name of virtual camera

RightCameraName param_cma001 # Name of real right camera

LeftViewImageName PoznanHall360_Texture001.yuv # Name of left input video

RightViewImageName PoznanHall360_Texture001.yuv # Name of right input video

LeftDepthMapName PoznanHall360_Depth001.yuv # Name of left depth map video

RightDepthMapName PoznanHall360_Depth001.yuv # Name of right depth map video

OutputVirtualViewImageName PoznanHall360_Texture002.yuv # Name of output virtual view video

ColorSpace 0 # 0...YUV, 1...RGB

Precision 2 # 1...Integer-pel, 2...Half-pel, 4...Quater-pel

Filter 1 # 0...(Bi)-linear, 1...(Bi)-Cubic, 2...MPEG-4 AVC

BoundaryNoiseRemoval 0 # Boundary Noise Removal: Updated By GIST

SynthesisMode 2 # 0...General, 1...1D parallel, 2...360 equirectangular

#---- General mode ------

ViewBlending 0 # 0...Blend left and right images, 1...Not Blend

3. Conclusions
We have implemented omnidirectional rendering as an extension of View Synthesis Reference

Software.

4. Acknowledgement
This work has been supported by the public funds as a DS research project for years 2017/2018.

5. References
[1] K. Wegner, O. Stankiewicz, A. Dziembowski, D. Mieloch, M. Domański, "Omnidirectional

6-DoF/3-DoF+ rendering", ISO/IEC JTC1/SC29/WG11, MPEG2017/m40806, , Torino,

Italy, July 2017.

[2] Y. Ye, E. Alshina, J. Boyce, Algorithm descriptions of projection format conversion and

video quality metrics in 360Lib, Joint Video Exploration Team (JVET) of ITU-T SG 16 WP

3 and ISO/IEC JTC 1/SC 29/WG 11 6th Meeting: doc. JVET F-1003, Hobart, AU, 31 March

– 7 April 2017.

[3] G. Bang, G. S. Lee, N. Ho H., “Test materials for 360 3D video application discussion”,

ISO/IEC JTC1/SC29/WG11 MPEG2016/M37810 February 2016, San Diego, USA.

[4] T. Senoh, K. Yamamoto, R. Oi, T. Mishina, M. Okui: Consideration of depth format.

ISO/IEC JTC1/SC29/WG11 MPEG m15047, Antalya, Turkey, Jan. 2007.

[5] B. Kroon, “Adding depth maps to fulfill MPEG-I Phase 1b parallax requirement”, ISO/IEC

JTC1/SC29/WG11 m41824, Macau, China, October 2017.

[6] B. Wang, Y. Sun, L. Yu, “[MPEG-I-Visual] 360 video sequence with depth map”,

JTC1/SC29/WG11 m41863, Macau, China, October 2017.

[7] R. Dore, M.-L. Champel, “3DoF+ proof of concept“, JTC1/SC29/WG11 m40862, Torino,

Italy, July 2017.

[8] R. Doré, I. Orlac, G. Briand, M.-L. Champel, “User tests on interactive parallax and

stereoscopy” ISO/IEC JTC1/SC29/WG11 MPEGM40863, Torino, Italy, July 2017.

