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Abstract—This paper presents a new method of estimation of 

camera parameters which uses spherical structures as calibration 

objects. The method allows estimation of intrinsic parameters and 

parameters of the optical distortion of a camera and is adapted to 

the multi-camera systems. The algorithms shown in the paper, as 

well as implementations of the optical center and lens distortion 

coefficients estimation use novel solutions developed for the 

purpose of this paper. The presented method is tested 

experimentally by the authors. The results of the experiment prove 

that the method provides the accuracy of the estimation of the 

camera parameters comparable to the widely used state-of-the-art 

methods, therefore can be successfully used with any multi-camera 

system. 

Keywords—intrinsic parameters, camera calibration, lens 

distortion 

I.  INTRODUCTION 

The calibration of a multiview system, i.e. the estimation of 
the parameters of used cameras, is the first step of the 
processing of the acquired views, e.g. in free-viewpoint 
television systems [14], [15], and augmented reality 
applications [16]. The calibration is necessary when the 
information about the relative distances between objects of a 3D 
scene has to be known [5]. 

The goal of this article is presentation of a new method of 
estimation of the camera intrinsic parameters (i.e. the focal 
length, the camera optical center, and lens distortion 
coefficients [3]) that is adapted to be used with multiview 
systems. The presented method is based on the calibration using 
a spherical object. As it is described in Section II, such object 
is adapted to the requirements of multi-camera systems, and, as 
it is presented in Section III, can be used to estimate all the 
required parameters of a camera. 

In the work, a camera is assumed to have an Euclidean plane 
of an image, i.e. the skewness of the plane 𝑜𝑥 = 0 and the focal 
length the same for the x and y planes of an image 
(𝑓𝑥 = 𝑓𝑦) [4]. It is a simplification that is assumed and used in 

the multiview systems with modern cameras, equipped with 
image sensors of the high quality.  

II.  CALIBRATION OBJECT 

In order to estimate the intrinsic camera parameters, in the 
first step it is necessary to provide a position of some reference 
points from the acquired views. The camera parameters are 

calculated on the basis of the geometrical dependencies 
between these points.  

There are many methods to acquire the reference points 
from an image acquired by a camera. Methods of the reference 
points searching are usually adapted to the used calibration 
object (e.g. a chessboard pattern [10]) and used method of the 
camera parameters estimation. The reference points can also be 
acquired manually, e.g. by a marking the lines that should be 
linear in an acquired view – such points can be used to eliminate 
the lens distortion. Nevertheless, other parameters of a camera 
must be calibrated as well, and in order to assure a higher 
convenience of the calibration, the automatic search for 
reference points is preferred. 

Choosing a calibration object has a direct influence on the 
performance of the camera parameters estimation. Moreover, 
not all calibration objects can be successfully used for the 
estimation of all parameters, e.g. the lens distortion cannot be 
properly estimated with the very small object, such as small 
lamp or the laser pointer, because the influence of the distortion 
on the shape of such object is negligible and hard to evaluate. 
On the other hand, these objects are very good for estimating 
the position of cameras (extrinsic camera parameters [3]).  

In order to choose a proper calibration object, it is necessary 
to describe the requirements for such an object. In this paper 
the method for estimating intrinsic parameters is proposed but 
the possibility of using the same object for the estimation of 
both intrinsic and extrinsic parameters increases usefulness of 
the presented method for multiview camera systems. Therefore, 
the calibration object should: 

 have shape that can be easily used for the estimation of 
all parameters of a camera, 

 be easily automatically detected in an acquired image, 

 be visible simultaneously by all cameras of a system, 

 be convenient in use. 
 

One of the objects that meets all the requirements is 
a sphere. As it is presented in Section III, the spherical object 
can be used to estimate all required parameters of the camera, 
i.e. the focal length, the principal point and the lens distortion. 
Moreover, because of the specified shape of a sphere, which can 
be easily represented mathematically, it can be automatically 
detected. A sphere can also be used for more than one camera 
simultaneously – even if cameras of a system are placed at an 
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angle, a sphere is visible, what is not a case e.g. when a planar 
checkerboard is used. Using a sphere is easier than the 
abovementioned checkerboard, because of much smaller size of 
the used spherical object. There are other methods that use a 
sphere as the calibration object [6], [11], [12]. Unfortunately, 
these methods do not estimate the lens distortion ([6], [12]), or 
require to use a sphere with the grid [11]. 

III. INTRINSIC PARAMETERS ESTIMATION 

In this Section, the new method of the intrinsic parameters 
estimation is presented. The proposed method consists of few 
stages (as shown in Fig. 1) and uses both the linear and 
non-linear optimizations during the estimation process. As it is 
presented in [5], methods of camera parameters estimation that 
consist of few steps and simultaneously utilize linear 
transformations (calculated on the basis of the geometry of the 
calibration object) and non-linear optimizations provide the 
highest accuracy of the estimation. Such algorithms are much 
less dependent on the initial parameters used in the optimization 
process. 

 

Fig. 1. The scheme of the proposed method of the intrinsic parameters 
estimation. 

A. The Estimation of the Position and the Shape of the 

Calibration Object 

The acquisition of a sequence used for the calibration of 
a camera should be performed immediately before or after the 
acquisition of the proper sequence. Often, some parameters of 
a camera (e.g. the focal length) are changed before the 
acquisition of the video, in order to adjust them to the conditions 
present during the recording (e.g. to the size of an acquired 
scene). Therefore, the estimation of the position of a calibration 
object has to be insensitive to the conditions of the acquired 
calibration sequence, i.e. to the background of the scene and to 
the lightning conditions too.   

The estimation of the position and shape of the calibration 
object is based on the Hough transform for circles [2]. Firstly, 
the image of the calibration object is binarized in order to 
extract the white sphere from a scene. All objects left in the 
image after the binarization are parametrized – their size, 

contour, and geometric center are estimated. These parameters 
are compared to the results of the Hough transform (performed 
on the input image, without binarization). The transform 
usually finds many circles in the image. If any of the circles has 
similar size and center as the objects on the binarized image, 
then this circle is used in the calibration process. 

B. Lens Distortion Estimation 

The lens distortion is expressed as a set of n distortion 
coefficients 𝑘 = [𝑘1, 𝑘2, … , 𝑘n] [1]. In case of the estimation for 
two coefficients 𝑘1, 𝑘2, the linear equation that links the 
position of the point before and after the distortion is: 

[𝑟
2 𝑟4

𝑟2 𝑟4] [
𝑘1

𝑘2
] = [

𝑥′/𝑥 − 1

𝑦′/𝑦 − 1
]  

where 𝑥, 𝑥′ are real and distorted positions of the point in 
the horizontal plane,  𝑦, 𝑦′ are real and distorted positions of 
the point in the vertical plane, 𝑟 is the Euclidean distance from 
the optical center of the camera. 

The use of only one position of the calibration object is 
sufficient for the estimation of 𝑘1 and 𝑘2 but the estimated 
model of distortions would be correct only in a small 
neighborhood of the object. Therefore, it is necessary to acquire 
more than one position of the calibration object, in order to 
cover as big as possible area of the camera. It results in 
a redundant linear equation for n positions of the calibration 
object: 
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As it can be seen, to estimate the distortion coefficients, 
besides the position of the calibration object on the distorted 
view, the theoretical position of the object on the undistorted 
view has to be also known.  

 

Fig. 2. A projection of a sphere on the plane of the image. 

 



When a sphere is visible by the pinhole camera model, a 
cone from the optical center of the camera to the sphere can be 
drawn (Fig. 2). Let us assume that the camera has no lens 
distortion. If the middle of the sphere would be on the optical 
axis of the camera, the projection of the sphere on the plane of 
the image would be round. If the sphere is moved from the 
optical axis, the projection becomes an ellipse.  

Fig. 3 presents the computer-generated set of 7 positions of 
the spherical calibration object. When the image has no lens 
distortion, there is an almost linear dependency between the 
difference of the smallest and the biggest radius of an ellipse 
and the distance from the optical center of the image (Fig. 4). 
Additionally, these radii are always perpendicular. 

 

Fig. 3. A generated set of the 7 positions of the calibration object (without the 
lens distortion). 

 

Fig. 4. The difference of the smallest and the biggest radii of an ellipse and the 

distance from the optical center of the image (without the lens distortion). 

Fig. 5 shows a shape of the calibration object when the lens 
distortion is present (the distortion coefficients in the example 
were k_1=-0.2, k_2=0.1, a distortion similar to the Canon Xh 
G1 camera, used in the FTV system described in [13]). 

 

Fig. 5. A generated set of the 7 positions of the calibration object (with the 
lens distortion). 

In Fig. 6 the difference of the smallest and the biggest radii 
of an ellipse and the distance from the optical center of the 
image are presented, but now for the distorted image. The 
dependency between these measures is now not linear and the 
angle between abovementioned radii is also no longer right. 

 

Fig. 6. The difference of the smallest and the biggest radii of an ellipse and the 

distance from the optical center of the image (with the lens distortion). 

The resultant distortion coefficient K, used in the following 
calculations, can be defined as: 

𝐾 = (1 + 𝑘1 ∙ 𝑟2 + 𝑘2 ∙ 𝑟4)  

In order to estimate the real position of the calibration object 
(𝑢, 𝑣) using the position on the distorted view (𝑢′, 𝑣′), we 
achieve: 

𝑢 = (𝑢′ − 𝑐𝑥)/𝐾 + 𝑐𝑥  ,

 𝑣 = (𝑣′ − 𝑐𝑦)/𝐾 + 𝑐𝑦 
(4) 

Therefore, it is necessary to calculate K to estimate the lens 
distortion. On the basis of the abovementioned dependencies, 
the authors propose such definition of K: 

𝐾 = (100 − |(𝑟𝑚𝑎𝑥 − 𝑟𝑚𝑖𝑛) ∙ 𝑐𝑜𝑠 (𝜑)|)/100 

where 𝑟𝑚𝑎𝑥 is the length of the longest radius of the ellipse, 𝑟𝑚𝑖𝑛  
is the length of the shortest radius of the ellipse, 𝜑 is the angle 
between these radii. When the angle is equal to 90 degrees, 
𝑐𝑜𝑠(𝜑) = 0, so the K is equal to 1, what indicates that there is 
no lens distortion in the image. Fig. 7 presents the comparison 
of the value of K that was calculated from the exemplary 
positions of the calibration object (Fig. 3 and 5) with the K 
estimated using proposed definition.  

  

 

Fig. 7. The value of K calculated for an exemplary positions of the calibration 

object (orange line) and estimated values (blue line). 

 Fig. 8 shows the longest and the shortest radii found in 
exemplary positions of the distorted positions of the calibration 
object. These radii, and angle between them, are used to 
estimate K using (5), which is then used to estimate the real 
positions of the calibration object with (4). The real and 
distorted positions are then used in (2), which is solved for 𝑘1 
and 𝑘2 using the least squares method. 
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Fig. 8. The shortest (blue lines) and the longest (red lines) radii of the 

calibration object. 

C. The Estimation of the Camera Optical Center 

 The camera optical center is estimated before the distortion 
coefficients but is also based on the properties of the projection 
of the sphere on the plane of the camera (shown earlier in Fig. 
2). The longest radius of the projected ellipse lies on the line 
which passes through the optical center of the camera. Fig. 9 
shows the longest radii of the 7 positions of the calibration 
object (red lines) and lines that contain these radii (orange 
lines). As it can be seen, the extended lines cross in the close 
neighborhood of the optical center of the camera (yellow dot).   

 

Fig. 9. The estimation of the optical center of the camera. 

In order to estimate the optical center of the camera, an 
minimization of the sum of the distances from the lines that 
contain the longest radii of the acquired positions of the 
calibration object to the estimated position of the optical center 
is performed: 

𝑓𝑚𝑖𝑛(𝑥, 𝑦) = ∑
|𝐴𝑖∙𝑥+𝐵𝑖∙𝑦+𝐶𝑖|

√𝐴𝑖
2+𝐵𝑖

2

𝑁
𝑖=1   

where: 𝐴𝑖, 𝐵𝑖 , 𝐶𝑖 – coefficients of the line i that contain the 
longest radius of the i-th position of the calibration object, 
𝑥, 𝑦 – the estimated position of the optical center of the camera, 
𝑁 – the number of the acquired positions of the calibration 
object. 

D. The Estimation of the Focal Length 

 The last step of the intrinsic parameters estimation is the 
calculation of the focal length of the camera. The solution is 
based on the method described in [6]. As it can be observed in 
Fig. 2, a change in the focal length has direct impact on the 
shape of the projection of the sphere on the plane of the camera. 
A cone that goes from the sphere to the optical center of the 
camera  can be described with 6 coefficients (𝐴, 𝐵, 𝐶, 𝐷, 𝐸, 𝐹). 
All points of the cone Q satisfy the equation: 

𝑄(𝑥, 𝑦) = 𝐴𝑥2 +  2𝐵𝑥𝑦 + 𝐶𝑦2 + 2𝐷𝑥 + 2𝐸𝑦 + 𝐹 = 0

 The coefficients of the cone are estimated for N positions of 
the calibration object using the minimization with the BFGS 
method [7]: 

𝑓𝑚𝑖𝑛 = ∑ 𝑄2(𝑥𝑖 , 𝑦𝑖)
𝑁
𝑖=1 . (8) 

 As [6] shows, when the lens distortion is removed from the 
image, the focal length fi for each position of the calibration 
object can be calculated using the equations: 

𝑓𝑖
2 = 𝑓𝑖

2 ∙ 𝑘
−𝐷∙𝐸+𝐴∙𝐹−𝐷∙𝑐𝑦−𝐸∙𝑐𝑥

𝐵
− 𝑐𝑥

2 − 𝑐𝑦
2 −

𝑐𝑥∙𝑐𝑦

𝑓𝑖
2∙𝑘∙𝐵

 , 

𝑓𝑖
2 ∙ 𝑘 =

𝐴+𝐶−√(𝐴−𝐶)2+4∙𝐵2

2∙(𝐴∙𝐶−𝐵2)
 . 

(9) 

 On the end, resulting N focal lengths fi are averaged in order 
to achieve the final focal length f of the camera. 

IV. EXPERIMENTAL RESULTS 

 Each of the parts of the proposed intrinsic parameters 
estimation method (i.e. the estimation of the optical center, the 
lens distortion, and the focal length) is tested in the performed 
experiments. The experiments are based on the generated 
calibration sequences  

A. The Accuracy of the Optical Center Estimation 

 The calibration sequence for testing of the accuracy of the 
optical center estimation was generated for the fixed focal 
length equal to 1000 sampling periods, the lens distortion 
coefficients were 𝑘1 = −0.2 and 𝑘1 = 0.1. The resolution of 
the image that contained 3 positions of the calibration object 
was 2048x1080. The estimation was performed for a set of 20 
sequences that varied in the position of the optical center of the 
camera. The results of the experiment are presented in Table I. 

TABLE I.  THE ACCURACY OF THE OPTICAL CENTER ESTIMATION 

Test 

sequence 
number 

Ground truth 

values of the 
optical center 

[sampling 

periods] 

Estimated values 

of the optical 
center  

[sampling 

periods] 

Error of the 

estimation  

 [sampling 
periods] 

𝑐𝑥 𝑐𝑦 𝑐𝑥̂ 𝑐𝑦̂ 𝑒𝑟𝑟𝑐𝑥
 𝑒𝑟𝑟𝑐𝑦

 

1.  791 425 792.2 417.6 1.2 7.4 
2.  800 374 792.5 362.8 7.5 11.2 

3.  830 714 833.9 706.7 3.9 7.3 

4.  909 449 904.0 447.6 5.0 1.4 
5.  917 407 920.7 405.6 3.7 1.4 

6.  940 399 939.7 399.4 0.3 0.4 

7.  1013 646 1020.3 644.0 7.3 2.0 
8.  1029 645 1021.0 643.5 8.0 1.5 

9.  1034 408 1038.5 406.5 4.5 1.5 

10.  1053 585 1047.5 576.0 5.5 9.0 
11.  1058 473 1050.6 469.5 7.4 3.5 

12.  1068 485 1060.5 481.4 7.5 3.6 
13.  1116 392 1121.2 397.5 5.2 5.5 

14.  1117 582 1112.4 581.1 4.6 0.9 

15.  1198 528 1192.5 533.4 5.5 5.4 
16.  1220 644 1213.3 647.7 6.7 3.7 

17.  1225 543 1230.8 539.7 5.8 3.3 

18.  1250 465 1257.2 461.3 7.2 3.7 
19.  1255 620 1243.6 611.0 11.4 9.0 

20.  1317 630 1312.1 626.0 5.0 4.0 

Mean errors: 5.7 4.3 

  

B. The Accuracy of the Lens Distortion Estimation 

 In the next experiment the focal length was again equal to 
1000 sampling periods. The resolution of the image that 
contained 3 positions of the calibration object was 2048x1080, 
the optical center was fixed in the center of the image 
(1024,540). The estimation was performed for a set of 20 



sequences that varied in the lens distortion of the camera. The 
results of the experiment are presented in Table II. 

TABLE II.  THE ACCURACY OF THE LENS DISTORTION ESTIMATION 

Test 

sequence 
number 

Ground truth 

values of the 

distortion 
coefficients 

Estimated values 
of the distortion 

coefficients 

Error of the 

estimation  

𝑘1 𝑘2 𝑘1̂ 𝑘2̂ 𝑒𝑟𝑟𝑘1
 𝑒𝑟𝑟𝑘2

 

1.  -0.06 0.02 -0.06 0.06 0.00 0.04 

2.  -0.10 0.05 -0.08 0.08 0.02 0.03 
3.  -0.10 0.10 -0.11 0.15 0.01 0.05 

4.  -0.11 0.15 -0.15 0.14 0.04 0.01 

5.  -0.11 0.06 -0.10 0.10 0.01 0.04 
6.  -0.12 0.12 -0.12 0.11 0.00 0.01 

7.  -0.12 0.06 -0.09 0.09 0.03 0.03 

8.  -0.14 0.13 -0.12 0.13 0.02 0.00 
9.  -0.15 0.10 -0.17 0.03 0.02 0.07 

10.  -0.16 0.12 -0.15 0.18 0.01 0.06 

11.  -0.18 0.14 -0.15 0.17 0.03 0.03 
12.  -0.20 0.10 -0.19 0.08 0.01 0.02 

13.  -0.20 0.14 -0.15 0.14 0.05 0.00 

14.  -0.21 0.13 -0.21 0.20 0.00 0.07 
15.  -0.23 0.15 -0.19 0.15 0.04 0.01 

16.  -0.24 0.15 -0.17 0.12 0.07 0.03 

17.  -0.24 0.19 -0.24 0.22 0.00 0.03 
18.  -0.26 0.15 -0.16 0.12 0.10 0.03 

19.  -0.26 0.18 -0.22 0.20 0.04 0.02 
20.  -0.27 0.11 -0.32 0.10 0.05 0.01 

Mean errors: 0.03 0.03 

C. The Accuracy of the Focal Length Estimation 

 In the last experiment the accuracy of the estimation of the 
focal length was tested. The resolution of the image that 
contained 3 positions of the calibration object was 2048x1080, 
the optical center was fixed in the center of the image 
(1024,540). Because the estimation of the focal length is 
performed after the lens distortion is removed from the image, 
the lens distortion coefficients were set to 0. The estimation was 
performed for a set of 20 sequences that varied in the focal 
length of the camera. The results of the experiment are 
presented in Table III. 

TABLE III.  THE ACCURACY OF THE OPTICAL CENTER ESTIMATION 

Test 
sequence 

number 

Ground truth 

values of the 
focal length f 

[sampling 

periods] 

Estimated 

values of the 

focal length 𝑓̂  

[sampling 

periods] 

Error of the 

estimation  
 [sampling 

periods] 

 

1.  517 561.4 44.4 

2.  538 506.3 31.7 

3.  798 695.6 102.4 
4.  802 708.4 93.6 

5.  815 820.7 5.7 

6.  1033 1115.5 82.5 
7.  1043 967.1 75.9 

8.  1096 1168.2 72.2 

9.  1121 1078.4 42.6 
10.  1164 1017.7 146.3 

11.  1258 1274.3 16.3 

12.  1460 1390.3 69.7 
13.  1593 1445.4 147.6 

14.  1605 1472.8 132.2 

15.  1692 1567.7 124.4 
16.  1727 1615.1 111.9 

17.  1754 1767.0 13.0 

18.  1795 1568.2 226.8 
19.  1803 1852.1 49.1 

20.  1880 1819.4 60.6 

Mean errors: 82.4 

D. Comparison with Other Methods 

 In [17], the author proposed a method of testing of camera 
parameters estimation techniques, together with the accuracies 
of 2 methods: the Self-calibration method [9] and the 
calibration with the chessboard pattern [10]. The comparison of 
these methods with the proposed method of the camera 
calibration is presented in Table IV. 

 The proposed method achieved comparable accuracy of the 
estimation of the camera parameters as [10], but is better 
adjusted to use with the multiview systems. [10] requires to use 
the large chessboard pattern, which is problematic to use with 
cameras with many cameras (see Section II). The camera 
self-calibration [9] uses small laser pointer and simultaneously 
estimates the extrinsic parameters of cameras (their position) 
but unfortunately the accuracy of the estimation of intrinsic 
parameters is the lowest from all methods. 

TABLE IV.  THE ACCURACY OF THE CAMERA CALIBRATION METHODS 

The estimated 

 camera parameter 

Error of the estimation 

Proposed 

method 

Chessboard 

[10] 

 Self 

calibration [9] 

Focal length  

[sampling periods] 
f 82.44 70.16 128.46 

Optical center 

[sampling periods] 

𝑐𝑥 5.65 3.82 36.19 

𝑐𝑦 4.28 6.32 58.72 

Lens distortion 
coefficients 

𝑘1 0.03 0.01 0.30 

𝑘2 0.03 0.02 - 

   

V. CONCLUSIONS 

 In this paper, the new method of the intrinsic parameters 
estimation is presented. The proposed method is adapted to be 
used with the multiview systems because of using a spherical 
calibration object. Such object was found to meet the 
requirements of the multi-camera systems – easiness of use, 
simultaneous visibility by many cameras of the system, and 
a shape that makes it easy to find the position of the calibration 
object. 

 The method uses novel methods of the optical center and the 
lens distortion estimation. Performed experiments shown, that 
the method provides the accuracy of the estimated camera 
parameters comparable to other methods, but because of being 
adapted to use with multiview systems, is a good alternative to 
the state-of-the-art methods. 
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