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ABSTRACT 

This paper deals with the detection and tracking of multiple harmonic series. We consider a bootstrap approach 

based on prior estimation of F0 candidates and subsequent iterative adjustment of a harmonic sieve with 

simultaneous refinement of the F0 and inharmonicity factor. Experiments show that this simple approach is an 

interesting alternative to popular strategies, where partials are detected without harmonic constraints, and harmonic 

series are resolved from mixed sets afterwards. The most important advantage is that common problems of 

tonal/noise energy confusion in case of unconstrained peak detection are avoided. Moreover, we employ a popular 

LP-based tracking method which is generalized to dealing with harmonically related groups of partials by using a 

vector inner product as the prediction error measure. Two alternative extensions of the harmonic model are also 

proposed in the paper that result in greater naturalness of the reconstructed audio: an individual frequency deviation 

component and a complex narrowband individual amplitude envelope. 

 

1. INTRODUCTION 

Harmonic sinusoidal modeling first proposed by Serra 

[1] is a well established signal analysis and processing 

framework applicable to speech and musical sounds, 

mostly generated by individual instruments. Serra’s 

hybrid approach assumed that a fundamental frequency 

f0 of the given sound exists and is known, so that the 

signal may be well approximated as a non-stationary 

harmonic series and the residual noise, 
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Perhaps the most important motivation of introducing 

harmonic constraints to the sinusoidal model was to 

provide a criteria that allowed unambiguous 
discrimination between deterministic (tonal) and 

stochastic (noise-like) components of audio spectra. In 

general, the separation of these parts is a difficult 

problem. First of all, the bulk of spectral components 

observed in natural audio exhibit only certain degree of 

coherence in time evolution of phase and instantaneous 

frequency. Consequently, most of them is neither purely 

deterministic nor purely random. In fact, the distinction 

alone is not as much critical from the perceptual point of 

view, as it is important due to the representation 

efficiency (in applications related to compression) and 

flexibility (in applications involving sound 

transformations). 

Serra’s hybrid harmonic model is limited to single, 

monophonic sounds. Harmonic modeling of polyphonic 

music is currently an important research problem and a 

hot industrial topic. Having a reliable harmonic 

modeling tool at hand would allow for ultimate sound 

manipulations, remixing of music records, source 

separation and recognition, not to mention a very 

efficient object-oriented representation and coding [2]. 

Our goal is to obtain an perceptually accurate 

representation of the polyphonic music signal so that a 

short frame of it may be expressed as 
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where Nk denotes a number of components in each of 

the K harmonic series, and fn,k denote the frequencies 

harmonically related to the corresponding fundamentals,  

f0,k . 

Recent attempts at harmonic modeling of polyphonic 

audio may be categorized in two groups. The first group 

covers employing of harmonic matching pursuit aimed 

at detection of whole series of partials at once [3,4]. The 

important limitation of such methods besides their huge 

computational complexity is the inability to detect 



 

 

harmonic structures with varying fundamental 

frequencies. The approaches from the second group 

involve an application of harmonic constraints at the 

early stage of sinusoidal analysis, after spectral peak 

detection [5]. They require solving a set of equations 

governing given set of partial frequencies that are 

estimated previously without harmonic constraints. 

Within these methods, estimation of f0 is based on an 

a’posteriori statistical reasoning. The main disadvantage 

of such approach is that the front-end unconstrained 

peak detection is prone to tonal/noise energy confusion 

and thus the seek of harmonic series may be performed 

on spurious data. 

The approach proposed in this paper is quite different 

from the above two. We first attempt to pre-estimate 

candidate fundamental frequencies from the power 

spectrum of the original signal, and on this basis we try 

to resolve sets of partials that are (almost) harmonically 

related to one of the multiple f0's (fig. 1). The second 

stage of this algorithm is in fact an iterative 

optimization procedure aimed at finding spectral peaks 

that are not necessarily at the ideal overtone positions, 

but in the close proximity. This is achieved by adjusting 

the fundamental f0 and , so that the observed overtone 

frequencies fn satisfy the model 
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The groups of harmonically related partials are tracked 

on a frame by frame basis. We employ a well known 

linear-prediction based tracking technique [6] which is 

modified to deal with vectors of partial frequencies 

instead of individual frequencies. 
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Figure 1. The general scheme of the proposed harmonic 

model based on pre-estimated fundamental frequencies 

Furthermore, we propose two extensions of the classic 

harmonic model that in our experience lead to greater 

flexibility and higher quality of the reconstructed 

signals. The first extension is that each amplitude of an 

individual partial is allowed certain bandwidth and is 

represented by a narrowband complex signal instead of 

the piecewise linear segments commonly used in the 

classical approach. Such representation is more truthful, 

as it embraces the whole of the signal energy associated 

with given harmonic partial, including that related to 

frequency estimation error. It also takes into account the 

natural width of each spectral line coming from the 

already mentioned phase incoherence. Therefore our 

model is capable of representing small random 

fluctuations of amplitudes and frequencies observed on 

short-time spectrograms of natural sounds.  

The second alternative extension is that each individual 

harmonic partial is allowed some minor frequency 

deviation from the (in)harmonic series (2-3). This yields 

a more natural and "live" sounding re-synthesized 

audio, without the artificial timbral characteristics 

which is a typical effect of rigid overtone frequency 

relations.  

The paper is organized as follows. A simple technique 

for estimation of multiple fundamental frequencies is 

presented in section 2. An iterative harmonic series 

estimation algorithm is proposed in section 3. Section 4 

describes a harmonic tracking technique using a vector 

extension of the linear prediction based tracking. The 

extensions of the harmonic model are discussed in 

section 5. Some experimental results and a discussion is 

offered in section 6. 

2. ESTIMATION OF MULTIPLE 

FUNDAMENTAL FREQUENCIES 

A great number of f0 estimation techniques has been 

proposed for analysis of speech and audio [7] using 

either a time-domain or frequency-domain approaches 

with mixed results on real-life data. Some of them, 

motivated by the success of the human auditory system, 

employ perceptual principles and scales for the 

detection of pitch that is closely related to f0 [8]. 

Unfortunately, many of these techniques offer only a 

moderate performance in the case of polyphonic music 

containing harmonies, reverberation and noise 

components [7]. Multiple fundamental frequency 

estimation in music recordings is still considered as a 

difficult problem. On the other hand, it has been shown 

recently that the most reliable results of f0 estimation are 

offered by taking into account a long term coincidental 

evolution of many harmonic partials (e.g. [9]). A 

sinusoidal model is a proper tool for revealing temporal 

organization in a complex audio signal. On the other 

hand, only harmonic model delivers partial parameters 

properly structured in harmonic groups. Such grouping, 

is much easier a task for the algorithm that is aware of 

fundamental frequencies. Therefore, a harmonic 

sinusoidal model may be employed together with f0 

estimation in a self-sustained estimation loop. Within 

such approach, f0 estimation relies on the results of the 



 

 

harmonic model that in turn relies on the f0 estimation 

(fig. 1). For a bootstrap initialization, a simple pre-

estimation of f0 candidates is necessary. 

Our technique for multiple f0 pre-estimation relies on 

two heuristic assumptions. First of all, it is assumed that 

a most prominent spectral peak in the signal short-time 

power spectrum is a member of the most prominent 

harmonic series (fig. 2, upper plot). In other words, the 

most prominent peak is either a fundamental or an 

overtone of an important fundamental that should be 

detected in the first order. The second assumption is that 

other harmonic series exhibit significant spectral peaks 

besides those from the currently considered one, so that 

they still may be detected after removal of the partials of 

the already detected series from the signal spectrum. As 

it shall be demonstrated, even if these assumptions do 

not hold in all cases, a pre-estimation of f0 on this basis 

is enough for the proper bootstrap harmonic modeling 

process. 

The signal is analyzed in overlapping frames windowed 

by a Gaussian window and zero-padded. A power 

spectrum S( f ) = |X( f )|
2
 is calculated in each frame 

using FFT of a sufficiently high resolution. The most 

prominent peak is detected. The exact frequency of this 

peak, fp is carefully determined by the use of a spectral 

estimation technique [10]. All integer sub-multiples fc of 

this frequency down to the minimum allowed frequency 

fmin are calculated and considered as potential 

fundamental frequencies. For each considered fc, a MOP 

(mean overtone power) descriptor is calculated, 
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The value of the MOP descriptor is the average power 

of narrow spectral bands comprising all overtones of the 

candidate fundamental fc. These are calculated by 

integrating the power of the signal spectrum weighted 

by appropriate normal pdf-s (4). 

It is interesting to observe, how the value of the MOP 

descriptor depends on the candidate fundamental 

frequency (fig. 2, lower plot). If a sub-multiple of a real 

fundamental is chosen, the overtone series of such a 

false f0 exhibits many missing partials, and the average 

power decreases rapidly. If an octave error takes place, 

i.e. the candidate is a multiple of a real fundamental, the 

overtone series is virtually complete, however many real 

partials are omitted. Since these odd partials have 

usually high energy in natural sounds, the resulting 

value of MOP is also lower. Many experiments show 

that this very simple technique is very successful at 

detection of the prominent fundamental frequency and 

is quite immune to octave errors. 
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Figure 2. Fundamental frequency estimation by the 

detection of maximum mean overtone power (MOP) 

Estimation of multiple fundamental frequencies is a 

result of an iterative process, wherein subsequent f0 

estimations are done after removing of the already 

resolved harmonic series from the signal spectrum. This 

removal is based on a more reliable and exact values of 

f0 and  obtained from the harmonic model, after the 

existence of the harmonic series has been confirmed by 

successful tracking. If tracking is unsuccessful, it means 

that the most prominent peak which initiated the whole 

process is an unreliable source of information and 

should be neglected. In our implementation, a soft 

damping function is applied to reduce the power of this 

peak, and the f0 estimation procedure is repeated. 

Removing of already estimated harmonic series from 

the signal is performed in the power spectrum domain, 

by application of a simple harmonic filter, which is 

designed according to (5), 
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Chances are that also peaks from other harmonic series 

are reduced by multiplication with H( f ), if they 

coincide with overtones of the already existing ones. In 



 

 

order to avoid this situation, the principle of spectral 

smoothness [7] may be employed to determine the 

optimal weights n of the individual bands. 

3. ITERATIVE ESTIMATION OF HARMONIC 

SERIES 

Proper resolving of the harmonic series from given 

signal spectrum involves estimation of the true 

fundamental frequency, f0, as well as the inharmonicity 

factor  that govern the frequency relations of harmonic 

partials according to the model (2). This difficult task in 

general [5] is much easier having a preliminary estimate 

of the fundamental frequency. As the pre-estimated f0 is 

only an approximate and  is unknown, we employ an 

iterative search procedure that is inspired by the EM 

(expectation maximization) method. The initial value of 

 is assumed to be 0. Alternatively, it is possible to 

examine the values of  estimated in previous frames. 

Each iteration of the adjustment algorithm consists of: 

• calculation of the frequency limits for searching the 

overtones of the current f0 estimate, 

)1(),1(
maxmin

 nnnn ffff  (6) 

• detection of all sinusoidal partials in each range of 

f
min

…f
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, 

• exact estimation of the partial frequencies [10] 

• finding a partial that most closely matches the 

appropriate value of fn in each range, 

• updating the estimates according to 































1

ˆ
ˆ,

)1(ˆ1

ˆ
2

2

0

22

2
0

n

fnf
E

nn

f
Ef nn  (7) 

Our experiments show that in most cases a convergence 

of the above adjustment procedure is achieved in 2-3 

iterations, depending on the harmonic density of the 

audio spectrum and the value of , usually in the range 

of 10
-3

. 

4. PREDICTION-BASED TRACKING OF 

HARMONIC PARTIAL GROUPS  

Several tracking algorithms for the sinusoidal model 

have been proposed hitherto. Lagrange et al [6] 

introduced a tracking technique that exploits the 

principles of linear prediction (LP) of speech for the 

prediction of partial frequencies. In fact, these 

frequencies are strictly related to pitch, and pitch 

changes are often governed by simple dynamics of 

player’s gestures in natural as well as many electronic 

sounds. Lagrange et al successfully applied the Burg 

variant of the LP predictor for tracking individual partial 

frequencies changing in time. The idea for the trajectory 

continuation rule is to select such data points from the 

sinusoidal analysis that in the current frame are closest 

to the predicted values on each of the already known 

trajectories in the previous frames. 

For tracking of harmonically-related groups of partials 

we propose a vector generalization of the LP-based 

tracker. In the ideal case, the trajectories of individual 

partial frequencies are scaled versions of the trajectory 

of f0. Therefore, it is possible to make the overall 

prediction-based tracking more robust by employing a 

prediction error measure that is minimized globally for a 

group of partials. In our implementation, the Burg 

algorithm is modified in such a way, that the error is 

calculated as a vector inner product. At each iteration, 

the reflection coefficient rk [6] is common for all partial 

predictors, and expressed as 
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where for each sample n, e 
f
k-1(n) is a vector of k-th 

order forward prediction errors of all partials within a 

harmonic group, and e 
b
k-1(n) is a corresponding vector 

of backward prediction errors. 

The important issue of every partial tracking algorithm 

is how to cope with singularities, such as incomplete or 

obviously erroneous data (missing partial information), 

beginnings and ends of trajectories, crossing 

trajectories, etc. Many of these are efficiently resolved 

by the introduction of zombie states of sinusoidal 

trajectories. Sometimes a chain of consecutive zombies 

needs to be inserted in order to maintain a continuity of 

a group of trajectories. In the case of LP-based tracking, 

the values of zombie states may be calculated by 

feeding the predictor with a sequence of zeros, however 

such approach quickly yields a sequence of extrapolated 

data that is heavily biased (fig. 3). By employing vector 

tracking, the calculation of missing data is supported by 

the tracking results of other partials in the same 

harmonic group. 
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Figure 3.  Comparison of unconstrained tracking of 

individual sinusoidal partials (above) and joint tracking 

of harmonic group (below) 

5. EXTENSIONS OF THE HARMONIC 

MODEL 

5.1. Complex amplitude envelope 

The idea of the complex envelope comes from the 

observation that certain residual frequency error of each 

sinusoidal partial may be represented by a low-

frequency oscillatory component. The extension of the 

harmonic model proposed here is to replace the 

traditional low order piece-wise approximation of 

partial envelopes An,k(t) in (2) with narrowband complex 

signals. These are obtained from the original signal by 

single side band demodulation using a continuously 

changing frequency, following the frequency trajectory 

of each partial (9). The demodulation product should be 

lowpass-filtered in order to remove the unwanted side 

bands related to the remaining portions of signal 

spectrum  
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The bandwidth of the filter hLP(t) is not critical, however 

it should be sufficiently narrow to effectively separate a 

single sinusoidal partial from other partials. 

This demodulation results in straightening of the 

variable spectral content surrounding each harmonic 

partial, so that its instantaneous frequency is close to 

zero. The magnitude of the complex envelope signal 

corresponds to the real envelope of the particular partial, 

while the phase is related to the frequency estimation 

error as well as any deviations of the real frequency 

from the smooth low-order curve used within the model. 

Such narrowband signals may be very efficiently 

represented, e.g. using transform coding [11]. They are 

also very easily transformable for any kinds of signal 

manipulations, like time stretching, pitch shifting etc. 

Experimental results show that such an extension of the 

harmonic model yields very naturally sounding 

reconstructed signals, thus it is possible to use this 

extended model in a broad range of applications, 

including high quality audio data compression [11]. 

5.2. Individual frequency residual 

The formulation of the traditional harmonic model (1) 

assumes that all partial frequencies are strictly related to 

the fundamental frequency. Synthesis of an audio signal 

from such a model often results in artificially sounding 

signals due to rigid harmonic relations of overtones. In 

real world musical sounds, certain frequency 

fluctuations may be observed due to various physical 

phenomena of vibrating objects, like stiffness, residual 

modulation, coupling of oscillation modes, etc. In order 

to cover these natural sound properties in our model, we 

propose to extend the formula of the polyphonic 

harmonic model (2) in such a way, that each partial is 

allowed an individual frequency deviation from the 

harmonic law (10). 
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The frequency deviation (residual) component, n,k(t) is 

a band-limited and value-bounded random process 

incorporating the above mentioned irregularities as well 

as the frequency estimation errors.  

One interesting way to obtain the values of the residual 

components n,k(t) is to extract the complex amplitude 

envelopes An,k(t), and perform an instantaneous 

frequency analysis. Since the envelopes are narrowband 

and (presumably) mono-component, the instantaneous 

frequency is simply a derivative of their phase [12]. In 

certain situations, transients and excessive noise may 

cause the derivative to become instable. In our 

implementation we use a combination of median 

filtering, clamping and linear smoothing to keep the 

estimated n,k(t) well-behaved. 

The values of n,k should be stored together with other 

model data for all applications requiring high quality 

reconstruction. For compression purposes it is possible 

to either apply a lossy waveform coding to the n,k(t), or 

to apply a parametric coding principle, i.e. represent 

only the basic statistical properties of the frequency 

residual and employ a random generator at the decoder 

side to rebuild a similar signal. 



 

 

6. EXPERIMENTAL RESULTS 

The polyphonic harmonic model described in this paper 

has been implemented in software in the form of a 

Matlab toolkit. Such implementation allowed for 

throughout testing of the behavior of its various 

components in many different conditions. For example, 

the model has been applied for analysis and coding of 

polyphonic audio at the range of bit rates of 16-32 kb/s 

(fig. 4). We used the EBU SQAM reference CD [13] as 

a source of many testing excerpts.  
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Figure 4. The spectrograms of the original music 

excerpt (above) and the reconstructed signal from the 

sinusoidal model encoded at 29kb/s (below) 

Depending on the complexity of audio source material 

the resulting quality of reconstructed music samples was 

moderate to very good, showing a significant advantage 

in terms of compression efficiency over the non-

harmonic sinusoidal model.  

Some informal listening test were also conducted in 

order to compare the degree of quality improvement 

offered by the two extensions proposed in section 5. The 

common observation is that replacing of a real-valued 

piece-wise linear envelopes by complex narrowband 

envelopes with a bandwidth of about 5 Hz results in a 

tremendous advantage in the reconstructed audio 

fidelity. Using linear envelopes and encoding the 

frequency residual also resulted in a high quality 

reconstruction. The perceptual difference between these 

two variants was minor and often hard to notice.  

It may be admitted that the frequency residual is just a 

simplified representation of the complex envelopes, 

wherein the magnitude is approximated by a piece-wise 

linear function. Our listening test results show that 

minor phase discrepancies are more important for the 

human auditory system than amplitude discrepancies of 

individual harmonic partials. 

7. CONCLUSIONS 

A simple implementation of a polyphonic harmonic 

model for music analysis has been presented in this 

paper. A combination of a bootstrap approach involving 

multiple f0 pre-estimation and iterative adjustment of the 

harmonic series parameters proves to be an efficient 

modeling tool. Two extensions of the harmonic model 

have been also described. Informal listening tests show 

a significant quality improvement may be achieved by 

the introduction of complex amplitude envelopes or 

individual frequency residual functions to the model 

data. 
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