

FAST DEPTH ESTIMATION ON MOBILE PLATFORMS

AND FPGA DEVICES

Marek Domański
1
, Jacek Konieczny

2
, Maciej Kurc

1
, Adam Łuczak

1
, Jakub Siast

1
,

Olgierd Stankiewicz
1
, Krzysztof Wegner

1

1
Poznań University of Technology, Chair of Multimedia Telecommunications

and Microelectronics, Poznań, Poland

2
Huawei Technologies, European Research Center, Munich, Germany

ABSTRACT

In this paper, we propose a fast technique for real-time depth

estimation that is implementable on mobile devices like

smartphones and tablets. Moreover, the FPGA-based implemen-

tations of this technique are also reported. The idea of this tech-

nique is to use small-block matching and exploit the recently

estimated disparity values in order to enhance spatial consistency

of the output disparity map. Using the Middlebury stereoscopic

test images, the proposed real-time technique is compared to

other techniques known from the references. The obtained re-

sults demonstrate high efficiency of the proposed technique im-

plemented both on mobile platforms and FPGA devices.

Index Terms —depth estimation, mobile application,

3D imaging on mobile, disparity on mobile, FPGA-based dispar-

ity estimation

1. INTRODUCTION

Mobile devices like smartphones and tablets are going to be

ready for 3D video applications. Some manufacturers have al-

ready started to equip them with autostereoscopic displays and

two cameras at least. The prospective mobile applications are

going far beyond acquisition and viewing of stereoscopic pic-

tures, but they include, e.g. embedding virtual objects into real

scenes or 3D model estimation of real objects. Therefore, the

adoption of 3D video technology to mobile devices becomes an

important research area. In particular, for most of 3D video ap-

plications, efficient real-time depth estimation is still a true chal-

lenge, especially when considering implementations on mobile

devices with their limited complexity and power consumption.

In order to meet these conditions of limited hardware perfor-

mance and limited power consumption, the respective depth

estimation techniques must be relatively simple but they still

have to produce high-fidelity depth. Unfortunately, the existing

solutions mostly suffer from important limitations.

Therefore, in this paper, we propose a fast technique for re-

al-time depth estimation that is implementable on mobile devices

like smartphones and tablets. For the proposed technique, we

also demonstrate an efficient implementation on FPGA devices

that may be used either directly or as a prototype for ASIC de-

signs.

2. STATE OF THE ART

Disparity estimation on mobile devices was already mentioned

in the papers dealing with 3D image and video-based applica-

tions (e.g. [1,2]).

In general, disparity estimation may be considered as mini-

mization of a cost function that may be defined in various ways,

e.g. in order to provide smoothness of the obtained disparity

map. The disparity estimation methods [3] may be classified as

global and local. The global methods exploit various techniques

of global optimization of the whole disparity maps while the

local methods provide the disparity maps using local optimiza-

tion of the disparity map around a pixel only.

The widely used global methods include the graph cuts

technique [4] and the belief propagation technique [5]. These

contemporary algorithms provide relatively smooth disparity

maps. Therefore, the real-time implementations of these methods

are subject to extensive research. Yang et al [6] proposed an

efficient real-time implementation of the hierarchical belief

propagation using Graphics Processing Unit (GPU). Another

interesting approach [7] uses simpler global reasoning algo-

rithms based on dynamic programming in horizontal scan lines.

Unfortunately, for the global methods, the complexity is rather

high – they need both significant processing power and large

memory volume. These high demands yield significant problems

in mobile implementations. For example, belief-propagation

algorithm used for depth estimation with VGA (640×480) reso-

lution and 32 considered levels of disparities, might require as

much as 80MB of space for message passing cache. This about

of memory, although not significant from memory capacity point

of view, has to be read and written-back in each iteration of BP

algorithm. Memory bandwidth available on mobile devices and

on FPGA devices, together with frame-rates required in real-

time depth estimation and practical number of iterations of BP

algorithm, therefore lower the usefulness of such approach.

Local methods use various types of block matching in order

to find the disparity for each pixel independently. Large number

of independent block matchings allow for massive paralleliza-

tion of the local disparity estimation algorithms. This enables the

usage of even large blocks (e.g. 35×35 pixels) that mostly pro-

vide disparity maps that are better compared to those obtained

using small blocks. Unfortunately, large blocks are very compu-

tationally expensive. Hence, the local methods with large blocks

are implementable in real-time using the abovementioned paral-

lelization.

Therefore, the local depth estimation algorithms can be ef-

ficiently implemented on GPUs even with large windows. Most

of them employ adaptively estimated weights in order to adjust

to the image content. For example, in works [8-11] weights in

the block matching cost are calculated by means of bilateral

filtering. Unfortunately, bilateral filtering is computationally

expensive and thus its various approximations are studied in the

literature. Mattoccia et al [8] divide matching window into small

regular blocks in which filter coefficients are kept constant. Wei

et al [9] propose two algorithms which employ separable ap-

proximation of bilateral filtering and iterative calculation of the

matching cost with exponential step size. Others, like [10,11] try

to use guided filters for fast computation of the matching cost in

block-size-independent O(N) time. Even with such mentioned

optimizations, the memory bandwidth available on GPUs of

mobile devices is still incomparably lower than those available

in e.g. mainstream PC GPUs. Therefore, also this approach is

inadequate for mobile devices considered in this work.

In this paper, we propose a depth estimation method that

would have advantages of both local and global methods.

3. GENERAL IDEA

In the proposed algorithm, disparity for a given pixel is estimat-

ed using disparities from the previously processed pixels.

At the beginning, there are no previously processed pixels,

e.g. in the first column of a picture. Therefore, for the pixels

processed first, disparity is estimated locally. For each such a

pixel, the disparity value is chosen, which minimizes the

matching cost function () calculated with the use of neigh-

boring pixels, for displacement values from a certain search

range:

 , ()- (1).

 () can be any matching cost function, e.g. sum of absolute

differences (SAD) calculated by block matching.

Such an estimated disparity value is used to enhance dis-

parity estimations in subsequent pixels. In context of a subse-

quent pixel, there can be many disparity values estimated for

previously processed pixels, therefore, such set will be denoted

further as * }. Calculation of the disparity

from Eq. 1 is updated with a penalty value which is added to

the matching cost of disparities not included in * + set of

disparities:

[() {

 * +

] (2).

Such output disparity value is fed to the subsequent pixels as

one of values.

The aim of usage of constant value is to penalize dispari-

ty changes between neighboring pixels, which result solely from

noise in the input images. Thus, the value of can be adjusted

experimentally accordingly to the level of noise aggregated with-

in (). It depends on the size of blocks used for calculation of

 (), and also on acquisition parameters of the used stereo pair

(e.g. sensitivity of the sensor, exposure time etc.). For pictures

acquired with modern cameras those parameters can be read

from meta data. Therefore it can be imagined that in a practical

application, the penalty value can be calibrated with use of

reference images for a given set of acquisition parameters and

then chosen adequately. For the sake of brevity we omit the de-

tails on how to choose parameter.

4. DETAILED DESCRIPTION

We assume the usage of two views, which are used to generate

dense disparity map for the left view. As for the matching cost

 () we used SAD of red, green and blue components and their

horizontal and vertical gradients (9 components in total), calcu-

lated between pixels in the left and in the right view. SAD was

aggregated over square blocks centered around the processed

pixel. In the experiments (cf. Section 6), we used the blocks of

size 1×1 to 9×9 pixels.

The order in which pixels must be processed in the pro-

posed algorithm is enforced by dependency of disparity estima-

tion on previously estimated disparities. Alt-

hough in principle, number can be different for each pixel, we

have chosen to use disparities estimated at previously

processed pixels: , located respectively to the

right, to the top-right, and to the bottom-right, from the currently

processed pixel (Fig. 1). Consequently, the disparity map is gen-

erated in columns, in order from right to left. Such a scheme is

beneficial due to occlusions, because we estimate depth for the

left view and the right view is used as a reference.

Figure 1. Processing order of pixels (right-to-left) in the implementation

of the proposed algorithm and the inference of disparity values

In the presented scheme (Fig. 1), the disparity for each pixel

is estimated in Pixel Disparity Estimation (PDE) module, which

implements the proposed algorithm. It can be noticed, that, in a

given column, estimation for each pixel is independent from

each other pixel. This feature is used for parallelization of our

algorithm. Of course, in practical implementation, the number of

PDE modules is limited, e.g. to 8 on mobile devices or CPU or

limited to 20 on FPGA.

Figure 2. Implementation of the proposed disparity estimation algorithm

for a single pixel in a Pixel Disparity Estimation (PDE) module

The PDE module (Fig. 2) implements calculation of Eq. 3,

which is a synonymous formulation of Eq. 2 that employs the

disparity value than can be computed with the use of Eq. 1:

 [() () ()] (3).

The minimal value of terms in , - is found and the

corresponding function argument (e.g. or) is assigned

to . Such formulation allows two implementation optimiza-

tions, which we use for software and hardware.

In the first one, () () values are cal-

culated first. If any of them is lesser than penalty then calcula-

tion of () is redundant and can be skipped. Therefore, in

such a case, disparity value is not needed and further block

matching for a given pixel can be also skipped. We have used

this optimization in our software implementation which yielded

substantial speed-up of computations.

In the second optimization, which we have employed in

FPGA, disparities and their corresponding costs () are

computed first, before the actual algorithm starts. Thanks to that,

block matching needed by () can be done very efficiently,

because calculations of components of SAD sums can be shared

Direction of processing of columns

Row y-1

Row y

Row y+1

PDE

PDE

PDEPDE

PDE

...

...

...
...

...

...

Column x Column x+1

PDE

PDE

PDE

Column x-1

...

...

...

...

...

...

...PDE

PDE

Pixel

Disparity

Estimation

- dprev 2 disparity value

- dprev 1 disparity value

- dprev 3 disparity value

-

Block

matching

arg min

d dprev 2

M(∙)

+C

M(∙) M(∙) M(∙)

Disparity

value

Matching cost

value

M(∙)
Matching cost

evaluation

dprev 1

dprev 3

updated

estimated

disparity

d’
dprev 1

dprev 2

or

dprev 3

in the

next PDE

PDE
Block

matching

Finds locally the

best disparity

value d

between neighboring pixels. The actual usage of disparity values

estimated in previously processed pixels, devised in the pro-

posed algorithm, is performed later in an update step, described

by Eq. 3 and depicted in Fig. 2.

5. IMPLEMENTATIONS

The proposed algorithm was implemented in software and in

hardware (Fig. 3).

For software platform, we used two Android mobile devices

equipped with ARM processor: Huawei Ascend P6 and Samsung

Galaxy Note 3, and a PC equipped with Intel Core i7 as a refer-

ence. The software implementation has been prepared in native

multithreaded C++ code, without any assembler subroutines. In

all cases, GPU was not used for any computations.

The hardware implementation have been prepared using

Verilog language. It runs on Xilinx Artix-7 device with

166 MHz clock. The FPGA implementation employs 20 parallel-

ized PDE modules and requires 27 000 LUTs and 38 blocks

of BRAM (36 kbit each).

Figure 3. The proposed disparity estimation algorithm implemented on

Android mobile devices (Huawei Ascend P6, Samsung Galaxy Note 3)

and on the processing board developed by the authors equipped with

Xilinx Artix-7 FPGA

6. RESULTS

For the quality evaluation of our algorithm, we have used Mid-

dlebury stereoscopic images [12]: Tsukuba Venus, Teddy and

Cones (Fig. 4). A commonly used bad-pixel ratio [13] has been

used as an objective quality index. Bad-pixel ratio presents the

percentage of pixels for which disparity is estimated wrongly, in

comparison to ground-truth disparity maps, with error greater

than 1 disparity level. As usually, the percentage of bad pixels

was calculated only for non-occluded regions of the images.

Tsukuba Venus

Teddy Cones

Figure 4. Images from Middlebury database [12] used for evaluation

Table I. Percentage of bad pixel for various block sizes
and optimized penalty values C

Block

size

Penalty

value C
Tsukuba Venus Teddy Cones Avg.

1×1 72 17.4 10.8 9.8 25.4 15.8

3×3 189 10.4 7.9 8.7 17.4 11.1

5×5 225 8.5 7.6 7.7 16.4 10.1

7×7 343 6.5 8.1 7.5 16.0 9.5

9×9 405 6.4 8.7 6.9 16.1 9.5

Quality of the estimated disparity maps was tested using

matching block of sizes in range of 1×1 to 9×9. For each block

size we have selected a constant penalty C value that provides

the lowest average percentage of bad pixels over four used stere-

oscopic images. The overall quality of the disparity maps esti-

mated, attained by our algorithm, can be found in Table I.

The increasing of the block size results in reduced average

percentage of bad pixels. The highest gains are observed in

range between 1×1 to 3×3 and to 5×5. Further increase of the

matching block size, over 5×5, provides minor improvements

with a drawback of high complexity increase. Exemplary dispar-

ity maps estimated for Cones and Teddy images with the use of

5×5 matching block are presented in Fig. 5.

We have also assessed speed of the proposed algorithm in

terms of the number of disparity maps estimated per second

(frames per second - fps). As for the reference, we have chosen

image of size 320×240 pixels and 32 tested disparity levels. For

example, in such conditions, our FPGA implementation achieves

1193 fps (Table II). Of course, the provided numbers can be

easily scaled to a different resolution, e.g. our FPGA implemen-

tation achieves 11 fps for 1920×1080 resolution with 128 tested

disparity levels.

Cones Teddy

Figure 5. Disparity maps estimated with matching block size 5×5

and penalty value C = 225

The proposed algorithm has been compared to other real-

time, state-of-the-art depth estimation techniques (Table II). In

the first group, the real-time CPU implementations of our algo-

rithm are shown. For those implementation, block size 3×3 has

been used in order to meet real-time requirements. Unfortunate-

ly, in the literature we did not find any mobile real-time imple-

mentations of disparity estimation algorithms which we could

compare to, in terms of bad-pixels and speed. What can be

shown instead, is that our PC implementation is comparable with

the state-of-the-art disparity estimation algorithms implemented

on GPU on PC. Results of those methods, both global and local,

are presented in the second and third group in Table II, respec-

tively. The bad-pixel ratio attained by our algorithm (11.11%) is

slightly worse, but it must be noted that GPU-implemented algo-

rithms are able to use very big windows (e.g. 33×33). For that,

GPU implementations employ hundreds of processors running in

parallel, while our software implementation employs a very lim-

ited number of computing threads (e.g. 8) and still attains very

comparable frame rate (16.7 fps).

As for the hardware implementation, the comparison is very

difficult, because different FPGAs allow for vastly different

degrees of parallelization etc. We have managed to adjust the

results available in literature to conditions in which our hardware

implementation was done. The results, presented in the fourth

group of algorithms in Table II, show that the proposed algo-

rithm is superficial related to the other presented algorithm in

terms of attained frame rate, which is 1193 fps. As for bad-pixel

ratio, the proposed algorithm is placed in-between the competi-

tive algorithms implemented on FPGA.

Table II. Implementations of real-time depth estimation methods

Algorithm

/ parallelization
Platform

Block

size

Average

bad pixel

ratio [%]

Frames

per

second*

Proposed algorithm - CPU on mobile devices and PCs

8 threads
Samsung Galaxy

Note 3
3×3 11.11 5 .6

4 threads Huawei Ascend P6 3×3 11.11 2 .3

8 threads Intel Core i7 3×3 11.11 16 .7

GPU on PC: global methods

RealtimeBP [6] GeForce 7900 GTX unknown 7.69 8

RealTimeGPU

[7]
Radeon XL1800 32×32 9.82 21

GPU on PC: local methods

CostFilter [10] GeForce GTX 480 36×36 5.55 24

FastBilateral [8] Tesla C2070 39×39 7.31 21

RealtimeBFV

[15]
GeForce 8800 GTX 33×33 7.65 46

ESAW [9] GeForce 8800 GTX 33×33 8.21 79

DCBGrid [11] Quadro FX 5800 35×35 10.90 10

FPGA

Proposed,

20 threads
Artix-7 5×5 10.05 1193

SGM [16] Virtex-5 9×9 8.43 480 **

SBASW [17] Virtex-5 13×13 12.27 230

* - assumed 320x240 images with 32 disparity levels

** - not directly provided in paper; assumed Virtex-5 XC5LX220T with
 112.3 MHz clock and design parameters pr = 5, dm = 2 given in the

 paper

7. CONCLUSSIONS

A lightweight depth estimation algorithm has been proposed. It

employs a novel regularization method that uses the disparity

values from previously processed pixels. These previously pro-

cessed pixels are located in the neighborhood of the currently

processed pixel i.e. to the right, right-top and right-bottom. The

proposed regularization method is very simple but efficient. In

contrary to e.g. dynamic programming, the cost function values

from previously processed pixels are not used. Therefore, the

algorithm is fast and eligible both for software implementation

on mobile devices with limited processing power and for hard-

ware implementation e.g. on FPGA devices. The results, pre-

sented for both platforms, show that the proposed algorithm

provides good quality of the estimated depth maps, comparable

with other state-of-the-art algorithms, while allowing real-time

operation.

8. REFERENCES

[1] F. Navarro, S. Cancino, E. Estupinan, “Depth estimation

for visually impaired people using mobile devices”, 2014

IEEE 5th Latin American Symp. Circuits Syst. (LASCAS),

Santiago, Feb. 2014.

[2] H. Tse Kai, Y. Kawashima, T. Fujisawa, et al., “Implemen-

tation and optimization of software depth estimation for

arm”, 3DTV-Conf.: The True Vision - Capture, Transm.

Display of 3D Video (3DTV-CON), Zurich, 2012.

[3] D. Scharstein, H. Hirschmüller, Y. Kitajima, G. Krathwohl,

et al. , “High-resolution stereo datasets with subpixel-

accurate ground truth”, German Conf. Pattern Recognition

(GCPR 2014), Münster, September 2014.

[4] M. Bleyer, M. Gelautz, “Graph-based surface reconstruction

from stereo pairs using image segmentation”, SPIE Elec-

tronic Imaging Conf., San Jose, pp. 288–299, January 2005.

[5] T. Montserrat, J. Civit, O.D. Escoda, J.-L. Landabaso,

“Depth estimation based on multiview matching with

depth/color segmentation and memory efficient Belief

Propagation”, IEEE Int. Conf. .Image Proc. (ICIP),

pp. 2353-2356, Cairo, Nov. 2009.

[6] Q. Yang, L. Wang, R. Yang, S. Wang, M. Liao, D. Nister,

“Realtime global stereo matching using hierarchical belief

propagation”, British Machine Vision Conference, pp. 989–

998, Edinburgh, 2006.

[7] L. Wang, M. Liao, M. Gong, R. Yang, D. Nister, “High-

quality realtime stereo using adaptive cost aggregation and

dynamic programming”, Third Int. Symp. 3D Data Pro-

cessing, Visualization, and Transmission (3DPVT’06),

Washington, pp. 798–805, 2006.

[8] S. Mattoccia, M. Viti, and F. Ries, “Near real-time fast bi-

lateral stereo on the GPU”, IEEE Comp. Society Conf.

Computer Vision and Pattern Recog. Workshops (CVPRW

2011), pp. 136 –143, Colorado Springs, June 2011.

[9] W. Yu, T. Chen, F. Franchetti, J. C. Hoe, “High perfor-

mance stereo vision designed for massively data parallel

platforms,” IEEE Trans. Circuits Syst. Video Techn., vol.

20, pp. 1509–1519, Nov. 2010.

[10] A. Hosni, C. Rhemann et al, “Temporally consistent dispari-

ty and optical flow via efficient spatio-temporal filtering”,

Advances in Image and Video Technology (Y.-S. Ho, ed.),

vol. 7087, Lecture Notes in Comp. Science, pp. 165–177,

Springer, 2012.

[11] C. Richardt, D. Orr, I. Davies, A. Criminisi, N.A.Dodgson,

“Real-time spatiotemporal stereo matching using the dual-

cross-bilateral grid”, European Conf. Computer Vision

(ECCV), Lecture Notes in Computer Science, pp. 510–523,

September 2010.

[12] D. Scharstein, R. Szeliski, “High-accuracy stereo depth

maps using structured light”, IEEE Comp. Society Conf.

Computer Vision and Pattern Recogn. (CVPR 2003), vol. 1,

pp. 195-202, Madison, June 2003.

[13] D. Scharstein, R. Szeliski. Middlebury stereo evaluation -

version 2, 2010, http://vision.middlebury.edu/stereo/eval/.

[14] Qingxiong Yang, Liang Wang, Ruigang Yang, et al.

“Realtime global stereo matching using hierarchical belief

propagation”, British Machine Vision Conference, pp. 989–

998, Edinburgh, 2006.

[15] Ke Zhang, Jiangbo Lu, Qiong Yang, G. Lafruit, et al. “Real-

time and accurate stereo: A scalable approach with bitwise

fast voting on CUDA”, IEEE Trans. Circuits Syst. Video

Techno., vol. 21, pp. 867 –878, July 2011.

[16] C. Banz, S. Hesselbarth, H. Flatt, H. Blume, P. Pirsch, "Re-

al-time stereo vision system using semi-global matching

disparity estimation: Architecture and FPGA-

implementation”, Int. Conf. on Embedded Computer Sys-

tems (SAMOS), pp.93,101, July 2010.

[17] C. Ttofis, T. Theocharides, “Towards accurate hardware

stereo correspondence: A real-time FPGA implementation

of a segmentation-based adaptive support weight algo-

rithm”, Europe Conf. & Exh. Design, Automation & Test

(DATE), 2012, pp. 703-708, Dresden, March 2012.

