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 Abstract - The paper deals with time domain 

(TD) modelling of diffraction of a signal, caused 

by 2D conducting convex objects for soft 

polarization case. Two models of the amplitude 

term of the time domain convex obstacle 

diffraction coefficient are proposed and 

compared. One model is derived using an 

analytical-numerical method and the other is 

obtained in a purely analytical way. Both 

methods use Uniform Geometrical Theory of 

Diffraction (UTD) formulated in the frequency 

domain (FD). The models are used to examine 

an Ultra Wide Band (UWB) pulse distortion. 

The accuracy and calculation complexity of 

both models are compared. The   slope term of 

the convex obstacle diffraction coefficient is also 

considered, for the case when slope diffraction is 

not negligible. The UWB pulse distortion caused 

by overall convex obstacle diffraction is also 

analysed. 

 

1 INTRODUCTION 

The UWB communication has received a great 

deal of attention in recent years [1-3]. The large 

bandwidth of UWB signals offers rapid increase in 

data transmission speed on the one hand, and 

greater accuracy of positioning and object 

detection on the other hand. However, this large 

bandwidth of UWB signals introduces some 

problems nonexistent or negligible in narrowband 

data transmission.  The   distortion of an UWB 

pulse is one such problem. Since the propagation 

loss is frequency dependent, the frequency 

spectrum of the transmitted UWB signal is 

significantly changed during propagation. This 

phenomenon has been discussed in a number of 

papers, e.g. [4-7]. 

Pulse distortion is mainly caused by scattering 

objects such as walls, edges and rounded surfaces 

[8, 19]. The propagation between scattering objects 

does not affect pulse shapes, but rather involves 

pulse delays [5-8]. An example of a scattering 

object is an obstacle with a rounded shape. Such a 

scattering object has its own frequency response 

and equivalent impulse response. In the case of 

UWB propagation, using the impulse response of a 

scattering object is more convenient for analysing 

the propagation of the transmitted UWB pulse.  If 

the impulse response of the scattering object is 

known, the time domain characteristics of the 

distorted UWB pulse can be found through an 

operation of convolution. In particular, time 

domain results can give more insight in baseband 

data transmission, which is an option in an UWB 

communication system. It is also helpful in 

determining time delay parameters of the channel 

in such areas as synchronization, positioning and 

detection.  

In principle, the impulse response of a convex 

object incorporates two terms corresponding to the   

phenomena of reflection and diffraction, 

respectively. At least one of these phenomena 

occurs for a given position of transmitter and 

receiver in a non-line-of-sight situation (NLOS). 

  In our paper we deal with one of these 

phenomena, i.e. with diffraction. The process of 

diffraction caused by a convex object determined 

in the time domain has some coverage in literature, 

e.g. in the paper of J. R. Wait and A. M. Conda [9]. 

Wait and Conda find the electric currents induced 

on a circular cylinder when it is excited by a 

temporal step-function plane wave. The currents 

are approximated in the frequency domain by an 

Airy integral. The approximate frequency domain 

result is valid when the radius of the cylinder is 

large compared to wavelength. Then the authors 

expand the FD expression into a power series and 

use an inverse Laplace transform to obtain an 

asymptotic series of inverse powers of time. In the 

second part of their paper, they discuss the 
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diffraction by a smooth surface when the source 

and observer are removed from the surface. They 

solve the special case of a cylinder, although they 

mention   that these results can be easily 

generalized. Their solution is valid for observation 

points near the shadow boundary. More examples, 

including the transient scattering by a circular 

cylinder, are discussed in [13]. 

     Another important issue is the transition zone 

diffraction, where the slope diffraction plays a 

significant role. Transition zone diffraction occurs 

when the scattering objects are relatively close to 

the shadow boundaries of the scenario. This 

problem has also been discussed in the literature, 

e.g. by J. B. Andersen [14], who developed a FD 

model concerning transition zone diffraction on 

screen edges. R. Qiu in [8]   presents a time 

domain model of propagation of EM wave signal 

over a row of buildings of the same height. P. H. 

Pathak in [16] derives the time domain version of 

slope diffraction on curved wedge. This is an 

extension of paper [15], which discusses time 

domain amplitude diffraction on a curved wedge. 

G. Koutitas in [17] discusses the FD model of the 

transition zone diffraction over convex obstacles, 

where slope diffraction is a very significant factor  

        In our paper we derive the time domain 

version of the model of two cascaded convex 

obstacles shadowing a transmitter and a receiver 

for soft polarization case. We find the time domain 

convex object diffraction coefficient which 

comprises   both the amplitude term and the slope 

term. We obtain it in a different way from that in 

[9]. We use the frequency domain Uniform 

Geometrical Theory of Diffraction, presented in 

[10, 11]. A similar method concerning the 

amplitude term of convex object diffraction 

coefficient was used in [12] and [13], where FD-

UTD for convex objects was also a starting point. 

In [12] the authors use the inverse Laplace 

transform in order to find the time domain convex 

obstacle diffraction coefficient, while in [13] the 

one-sided inverse Fourier transform is used. In our 

paper we use both inverse Laplace transform and 

one-sided inverse Fourier transform as well as 

some numerical approximations. First we focus on 

the amplitude term of the time domain convex 

obstacle diffraction coefficient. We obtain the 

amplitude term in two ways, applying first an 

analytical-numerical approach and next a purely 

analytical approach. Then we find the slope term of 

the time domain convex object diffraction 

coefficient. We use the derived amplitude and 

slope term of the time domain convex obstacle 

diffraction coefficient to examine the impact   of   

convex obstacles on the shape and time 

characteristics of a propagating UWB pulse.  

The paper is organised as follows. In Section 2 

we describe the model of a given convex obstacle 

and its parameters. Section 3 presents the 

transformation of the FD diffraction coefficient of 

a convex object into the time domain. We present 

two methods for performing the transformation. 

The first is an analytical-numerical method 

involving Laplace transform and the algorithm of 

rational function approximation, called vector 

fitting. The second   is a purely analytical method 

involving inverse Laplace transform and one-sided 

inverse Fourier transform.   We compare the two 

methods in terms of their correctness. In Section 4 

we show how to obtain   the time domain version 

of the slope term of the diffraction coefficient of a 

convex obstacle. Section 5 gives an example of the 

slope diffraction application for the case of two 

convex obstacles diffraction. Finally, the summary 

and conclusions are presented in Section 6.   

 
2. DEFINITION OF THE BARE HILL 

CHANNEL TRANSFER FUNCTION  

 

One example of convex object is a 2D bare 

hill. It can be modeled as a part of a circle, as   

 
Fig. 1. Model of a bare hill. 

shown in Fig. 1. This model was proposed by H. 

Bertoni, [21]. The arc of the circle is limited by a 

chord of   length 2xH. The height of the hill is equal 
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to  yH. Knowing xH and yH , we can calculate the 

radius of the hill, RH. We assume that the 

transmitted pulse approaches the receiver along 

one dominant ray, which is a creeping ray. The ray 

becomes “attached” the hill at attachment point Q’. 

Then it travels along the arc of the hill. The ray 

leaves the arc of the hill tangentially at the 

shedding point Q. Therefore the transmitted pulse 

experiences  diffraction on the convex obstacle. 

The distortion of the pulse is determined by the 

transfer function over the distance Q’Q.  The 

distortion caused by   propagation in the air can be 

neglected.  

In this paper, in order to find the time domain 

convex obstacle diffraction coefficient we use the 

frequency domain Uniform Geometrical Theory of 

Diffraction (UTD) [10, 11]. The exact UTD 

expression for the frequency domain diffraction 

coefficient for soft polarization of one convex 

obstacle is given by (1) [18, 20], and the 

parameters of the model are indicated in Fig. 1 

[21].   
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The diffraction coefficient (transfer function 

HA(ω)) given by  (1) does not include the delay 
terms or spreading factor. The parameters used in 

(1) are as follows: 
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where β=ω/c, c is the speed of electromagnetic 
wave propagation in free space and L is the 

distance parameter, which can be defined in the 

following form (using notation shown in Fig. 1): 
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F(X) is the transition function and p
*
(x) is the 

special Fock scattering function, determined by the 

following integrals:  
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3.  IMPULSE RESPONSE OF A BARE HILL 

  

 For a bare hill, the impulse response is 

equivalent to the time domain diffraction 

coefficient of the hill model described in the 

previous section. It is a TD-UTD formulation 

which incorporates all properties and assumptions 

of the FD-UTD theory, formulated for the 

diffraction on smooth convex surfaces. The 

impulse response of a bare hill is obtained in two 

ways, in an analytical-numerical way and in a 

purely analytical way.   

 

 

 

A. ANALYTICAL-NUMERICAL METHOD 

 

In order to transform (1) into the time domain, 

we   split it  into two components: 
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The transition function F(X) in (4) can be 

expressed as a  complementary error function: 

 

                        ∫
∞

−=
x

t
dte

x
xerfc

22
)(                          (6) 



 4 

 

Comparing (2) and (6), we can define the transition 

function F(X) in the following way: 
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After substituting jω=p and performing some 

manipulations we have: 
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where: 
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From  the Laplace transform table we have: 
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Taking into account relationships (10) and (8), we 

can present inverse Laplace transform of H1(p) by 
the following formula [8]: 
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Transfer function H2(ω) cannot be easily 

transformed to the time domain in an analytical 

way because of the Fock scattering function 

incorporated in it. We will consider the analytical 

way later. In this section we propose to 

approximate H2(ω) with a rational function.  To do 
this, we use a new and very effective method called 

vector fitting, worked out by B. Gustavsen [22]. 

This method describes a way of fitting the 

measured or calculated values of a signal Fourier 

spectrum to the approximating function of the 
following form: 
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Vector fitting allows us to find, in an iterative way, 

such values of residues cn, d, h and poles an, that 

f(p) is very well fitted to measured or calculated 

data. The code of the algorithm is given in Matlab 

language,   [23]. The algorithm needs on its input 

the initial values of poles an. In order to 

approximate smooth functions, the values of these 

poles should be the values of frequencies 

distributed linearly or logarithmically over the 
whole given frequency band.   

In order to use the vector fitting algorithm, we 

calculated H2( ω) numerically for the frequencies 

up to 20 GHz, with the parameters  of the hill 

RH=2500m and θ=0.08m. Then by running the 
vector fitting program we obtained the values of 

residues and poles of the function f(p) for N=7. 

The results of the approximation of the transfer 

function H2(ω)  for given parameters are shown in 

Fig. 2.  

 

Fig.2. Amplitude characteristic of H2(ω), its 
approximation and the error of approximation. 

 

We see that the approximating function is very 

well fitted to the approximated function and the 

maximum relative error of approximation of the 

amplitude of H2(ω) is slightly bigger than 10
-4
. 

   The inverse Laplace transform of (12) is as 
follows: 
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The final form of the impulse response of the hill is 

the sum of expressions   (11) and (13): 
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It is worth mentioning that vector fitting is not 

suitable for approximation of H1(ω) and even with 
40 poles  (12) does not fit H1(ω) well. The reason 
of this is that the imaginary part of H1(ω) cannot be 
easily approximated by a hyperbolic function. 

 

B. PURELY ANALYTICAL METHOD 

 

In this section we present the purely analytical 

method of obtaining the convex obstacle 

diffraction coefficient. From now on, we will call 

this method the analytical method. 

Formula (1) cannot be directly transformed 

into the time domain in an analytical way. It must 

be first presented in the following form [10]: 
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where ( )dsP ξ  is the Pekeris caret function, which is 

in the following relationship with the Fock 

scattering function 
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Now HA(ω) contains two components: 
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The above components have different forms from 

those used in Section 3A. We substituted the 

Pekeris caret function to (1), because thanks to it 

the second component of HA(ω) (20) can be 
approximated by a fast converging series. It could 

not be done in the previous section, and H2(ω) was 
approximated numerically. Now HA(ω) given by 
(15) can be easily transformed to the time domain.  

First we approximate (20). It can be approximated 

by two different series, depending on the value of 

the argument of the Pekeris caret function. The 

first one (for bigger values of ξd) is the series 
expansion given by Keller [10]: 
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qn are zeros of the Airy function and ( )nqAi'  is the 

value of the derivative of the Airy function for qn. 

The values of qn and ( )nqAi'  can be found in [10]. 

 The second approximating series is related to 

smaller values of ξd (down to 0), which correspond 
to the values of field in transition zones. In this 

situation we propose to use the approximation of 

the Fock scattering function for the case of soft 

polarization for small ξd [24]: 
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The values of coefficients ρn can be found in [13, 
24].  

Now the question is what is the best threshold 

value of ξd, for which (20) can be approximated 

with sufficient accuracy (by this we mean that the 

relative deviation is less than or equal to 3% and at 

the same time the number of series terms is as 



 6 

small as possible). The calculations which we 

conducted have shown that this threshold value is 

about ξdT = 0.35. The closer the value of ξd is to the 
threshold, the bigger number of series terms is 

needed for appropriate approximation of (19). The 

maximum required number of   terms in (21) and 

(24) equals 12 and 5, respectively. The more the 

value of ξd differs (in either way) from the 

threshold value ξdT = 0.35, the fewer term in (21) 

and (24) are needed, reaching at the limit only one 

term. When the threshold value of ξdT is moved 
from 0.35 towards either side, the number of 

needed terms in (21) or (24) in the threshold 

vicinity rapidly increases.  

For ξd>0.35 (20) is approximated by   Keller’s 

series. First we must transform Keller’s series to 

the time domain. In order to do this, we substitute 

(22) and (23) to (21). After rearranging, (21) takes 

the following form:  
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In order to approximate (20) for ξd≤0.35 we 
substitute (24) to (16), which results in the 

following series expansion: 
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Finally, the approximation of HA2(ω) can be 

written in the following form: 
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After approximating (20) we can transform (15) 

into the time domain   using the inverse Laplace 

transform (as in the case of H1(ω)) and the one-
sided inverse Fourier transform, where time tc may 

be a complex number [11,13]: 
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In order to apply (30) to (18), (19), (25) and (28), 

we must find the following integrals: 

 

                      ,)(
0

1

3/1

∫
∞

−= ωω ωθγω deetI tja                  (32) 

 

                         .)(
0

2 ∫
∞

= ωω ω detI tja                      (33) 

  

Integral (32) is calculated using Taylor’s series 

expansion of the factor e
jωt
 around ω=0. After 

integrating, I1(t) can be approximated by the 

following series:  
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where a>-2. 

Now we can give the time domain equivalents of   

expressions (18), (19), (25) and (28): 
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The whole impulse response transformed from 

HA(ω) has the form: 
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where B is the frequency band of the incident 

signal. 

               

   C. COMPARISON OF THE TWO METODS.   

 

In this section we examine the accuracy of the 

results presented in sections 3A and 3B. In order to 

verify the accuracy of formulas (14) and (41) we 

examine the distortion of an UWB pulse caused by 

a single convex obstacle. It is done through the 

operation of convolution of the incident UWB 

pulse p(t) and (14) or (41). The pulse p(t) has two 

parameters, a and tc, which are the width of the 

pulse and the middle argument of the pulse, 

respectively.   
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The results of the convolution are compared with 

the results of frequency domain calculations 

obtained using IFFT ( Fig. 3.)  The parameters of 

the convex object are the same as in Section 3A. 

Fig.3 shows the distorted pulse and the normalized 

transmitted pulse with its parameters set to the 

following values: a = 3ns, tc = 1ns.  

UWB pulse distortion (Amplitude diffraction)

-0.3

-0.2

-0.1

0.0

0.1

0.2

0.3

0.4

1.2 1.3 1.4 1.5 1.6 1.7 1.8

Time [ns]

a b c d

 
Fig 3. Comparison of the incident UWB pulse and the 

distorted pulse calculated using the analytical-numerical 
method and analytical method: a – distorted pulse 

calculated using IFFT, b – distorted pulse calculated in 

time domain using the analytical-numerical method, c – 
distorted pulse calculated in the time domain using  the 

analytical method, d – incident UWB pulse normalized 

to the amplitude of the distorted pulse.  

 

We see that   the accuracy of the results obtained 

by both methods is similar and very good (formula 

(41) is slightly more accurate). In the case of 

analytical-numerical method, 7 poles of the 

function f(p) approximating H1(ω) are sufficient to 
achieve such  accuracy. In the case of analytical 

method, the same results are achieved for the first 

12 terms of (25) and for the first 5 terms of (28).  

However, this method is not applicable in all 

circumstances. The conducted calculations have 

shown that   formula (41) gives a very good 

agreement with the results of the calculations 

obtained using IFFT when 
( ) 








3γθ

t < 0.00725. We 

shall call this condition (a).  Then only 3 terms of 

expression (34) are required to make it convergent. 

If condition (a) is not fulfilled, formula (41) is still 

valid and gives very good results when ξd≤0.35 or 
equivalently when t<10

-6
s, upper frequency of 

transmitted signals is less than or equal to 20GHz 
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and R
1/3θ<0.11m1/3

rad. In other cases the method is 

not applicable because of weak convergence of 

(34). 

Summering up, analytical method provides the 

closed form of the impulse response – (41), while 

formula (14) is not a generalized solution. It is 

related to a particular example of a convex 

obstacle; on the other hand, it does not have the 

limitations which occur in the analytical method. 

 
4. SLOPE TERM OF THE FREQUENCY 

DOMAIN CONVEX OBSTACLE DIFFRA- 

CTION COEFFICIENT 

 

When it comes to finding the diffraction 

caused by two cascaded convex objects, so that one 

convex object is in the transition zone of the 

previous one, slope diffraction is the factor to be 

determined. In the described situation slope 

diffraction plays a significant role in field 

distribution.  

 

A. FREQUENCY DOMAIN FORMULATION 

 

The slope term of the diffraction coefficient is 

defined by the following equation [14,17]: 

 

    ( ) ( )
,

1)(
),( 21 
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where s is the distance from the point where the 

creeping ray leaves the convex obstacle to the point 

of observation. Taking into consideration the 

amplitude term and slope term of the convex object 

diffraction coefficient, the frequency response of 

the channel has the following form: 

 

                ,)()](),([
)( sRjk

As esAHsH
+−+ θωω              (44) 

 

where the input of the channel is at  point Q’ in 

Fig. 1 and the output of the channel is at the point 

of observation in the shadow zone. 

Performing the differentiation in (43), we obtain: 
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Using approximations of ),(2 θωAH  given by (25) 

and (28),   after differentiation we obtain: 
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  (46) 

 

B. TIME DOMAIN FORMULATION 

 

   To obtain the time domain version of (45) and 

(46), we use the analytical approach.  Following 

the same steps as in Section 3B, we can write the 

time domain versions of expressions (45) and (46)  

in the form:   
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5. MODEL OF THE CHANNEL WITH TWO 

CONVEX OBJECTS SHADOWING TRANS- 

MITTER AND RECEIVER 

 

The considered channel model is shown in 

Fig. 4. We assume that the slope of the field is zero 

when the field originates from the transmitter. We 

further assume that the receiver is in the far zone, 

so the slope of the field originating from the 

second obstacle equals zero. Then the field at the 

receiver is defined in the frequency domain by (53) 

(the time delay of the signal over the distance 

θ1/2R1/2 is not included): 
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where: 
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Fig. 4. Channel model containing two convex objects 
between transmitter and receiver. 
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E1 is the value of the field at point 1, where the 

creeping ray hits the first convex object, LA12Re, 

LS12Re are the distance parameters ensuring the 

continuity of the amplitude term and slope term of 

the field about the shadow boundary after the 

second convex object, and LATr12, LSTr12 are the 

distance parameters ensuring the continuity of the 

amplitude term and slope term of the field about 

the shadow boundary after the first convex object. 
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121
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The distance parameters LA12Re and LS12Re are 

generally frequency dependent [17]. However for 

some position of transmitting antenna with respect 

to convex obstacles and for higher frequencies 

(over 1GHz), LA12Re and LS12Re are approximately 

constant with very small imaginary part so they 

may be treated as real constants. The responses of 

the obstacles for the baseband UWB impulse (42) 

for frequency dependent or constant (frequency 

independent) LA12Re and LS12Re practically do not 

differ (the relative error does not exceed 1%). The 

above considerations are valid for the cases when 

sTr1, s12, s2Re are comparable with or larger than the 

radius of the first obstacle and additionally the 

angle θ1  is sufficiently small. The smaller the 

radius of the first obstacle the greater the ratios R1 / 

sTr1, R1 /s12 and R1 / s2Re  must be.  

Other justification results from following 

observation: the smaller the values of the R1
2
/ 

LATr12
3
 and θ1 the closer the distance parameters 

LA12Re and LS12Re to a complex constant, which 

imaginary part tends to zero for higher frequencies. 

The numerical simulations conducted by us 

showed, that for example when R1=0.25m and 

sTr1=s12=s2Re=2m, the value of θ1 can not be larger 
than 0.11 (for larger values of θ1 the error resulting 
from treating the LA12Re and LS12Re as real constants 

is higher). The scenario related to the data θ1=0.11, 
R1=0.25m and sTr1=s12=s2Re=2m occurs when 

transmitting antenna and the first obstacle are 

collinear as well as the difference between the 

heights of the first and second obstacle is 0.22m. 
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Other scenario, related to the same data occurs 

when the obstacles are collinear and the difference 

between the transmitting antenna and the obstacles 

is 0.22m.  For bigger obstacles when for example 

R1=200m and for distances sTr1=400m, 

s12=s2Re=150m, the value of θ1 can not exceed 0.2.  
With the assumptions given above, using the 

formulation derived in Section 3B and 4B , we 

obtain the time domain formulation of (53) in the 

form: 
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The term D(LS12Re,,R2,θ2) can be transformed into 

the time domain using the method  presented in 

Section 3B. It can be written in the following form: 
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Fig. 5   shows the distortion of the incident UWB 

pulse with the same values of parameters of (42) as 

in Section 3C. The values of parameters of the  

convex objects are: θ1=0.15, θ2=0.20, R1=200m, 

R2=150m.   

 
6 CONCLUSIONS 

 

The paper presents a new way of deriving the TD-

UTD solution for diffraction coefficient of a 

smooth convex conducting object. The resulting 

formulas are used to investigate an UWB pulse 

distorted by a convex diffracting object. The 

derived TD-UTD solutions involve the same ray 

paths as the FD-UTD solution from which they 

were transformed. The authors propose two 

methods for obtaining the TD-UTD solution:  an 

analytical-numerical method and a purely 

UWB pulse distortion (Amplitude + Slope 

diffraction)
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a b c

Fig. 5. The shape of the distorted UWB pulse with the 

parameters: a=3ns, tc=1.ns. Comparison of the results of 

the pulse distortion obtained trough IFFT (a) with the 

results of the pulse distortion obtained through direct 
time domain calculations (b), incident UWB pulse 

normalized to the amplitude of the distorted pulse (c).  

 

analytical method. Each of them leads to a 

different TD-UTD formulation for the diffraction 

coefficient of a convex obstacle. The first 

formulation obtained through the analytical-
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numerical method is related to particular values of 

convex obstacle parameters and the second one is a 

formulation of a generalized form, but its 

application is limited to a given range of values of 

convex obstacle parameters. However, using the 

latter formulation for a specified range of 

parameters of the convex obstacle ensures very 

good accuracy in determining the pulse distortion. 

The application of the first formulation gives 

results which are only slightly worse.  

The paper also presents an extension of the 

TD-UTD solution for a diffraction coefficient of a 

smooth convex obstacle when slope diffraction is 

included.    Slope diffraction is important when one 

scattering object or the receiver is in the transition 

zone of the preceding convex scattering object. We 

have examined the distortion of a particular UWB 

pulse caused by two cascaded convex objects (see 

Fig. 5). Although (41) and (52) relates to soft 

polarization case alternative formulas can be 

derived for hard polarization case using similar 

method to that applied for soft polarization case. 

Comparing Figures 3 and 5, we may conclude that 

the pulse distorted by two obstacles resembles the 

shape of the derivative of an incident pulse, given 

in (42). It can be seen from Fig.3 that between the 

incident pulse and the distorted pulse there is a 

shift in the time domain caused by a convex 

obstacle. This shift must be taken into account 

during analysing of problems concerning distance 

measuring or synchronisation of the received 

pulses at the receiver. TD-UTD solutions presented 

in the paper can be used to solve a wider scope of 

transient problems, where the propagation channels 

with convex obstacles are investigated, for 

example when   a transmitter and receiver are 

separated by a row of hills of arbitrary size and 

height or by a row of buildings with convex-shaped 

roofs. 
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