
Analysis of the complexity of

the HEVC motion estimation

Jakub Stankowski 1, Damian Karwowski, Krzysztof Klimaszewski,

Krzysztof Wegner, Olgierd Stankiewicz, Tomasz Grajek

Poznan University of Technology, Polanka 3, 60-965 Poznań, POLAND
1 jstankowski@multimedia.edu.pl

Abstract – The paper presents analysis and comparison of

complexity of selected algorithms of motion estimation used in

video compression. With the use of own, highly optimized

software implementation the authors explored complexity of the

methods applied in the framework of the new High Efficiency

Video Compression (HEVC) technology. The influence of many

different factors on motion estimation complexity has been

deeply studied, including the implementation technique, type of

the algorithm, number of processor threads used, kind of metric

of blocks similarity. The results obtained allowed to formulate

guidelines and conclusions that may be useful for future

implementation of motion estimation algorithms in context of

HEVC encoders.

Keywords – Video encoder, HEVC, motion estimation, complexity

I. INTRODUCTION

The technique of hybrid video compression has revolutionized
the way in which we store and transmit digital images. In this
technique, the blocks of the currently encoded image are
effectively predicted and coded on the basis of other data (derived
from the same image - i.e. intra-frame predictive coding, or
derived from other neighbouring images – i.e. inter-frame
predictive coding) resulting in a very high efficient video
compression. Just for this reason, the technique in recent years has
been the subject of international standardization and gained a great
interest from the market.

The highest achievement in the field of hybrid video
compression is recently standardized High Efficiency Video
Coding (HEVC) technology[2]. HEVC high efficiency of
compression comes for the price of high complexity of a video
encoder. It is commonly known that high complexity of an
encoder is mainly caused by motion compensated inter-frame
prediction, which requires computationally intensive motion
estimation process. For every block size of every picture, an
encoder has to find optimal motion vector against the number of
previously encoded frames in order to choose the best compression
mode for a given fragment of an image. Unfortunately, this highly
increases the complexity of an encoder[3]. Therefore, necessary
works on complexity reduction of an encoder must take place
before any market adaptation (of a new coding technology).

Although a number of different algorithms of motion
estimation have been developed and tested since the beginning of
hybrid video compression development (e.g. Two Dimensional
Logarithmic Search[7], Hexagon-based Search[8], Diamond
Search[9], Uneven Multi-Hexagon Search[10], Enhanced
Predictive Zonal Search[11] or TZ Search[12]) there are very little

details about real complexity of those methods applied in the
employed to the market encoders. It is especially true when
consider those methods in the new HEVC framework.

First of all, relatively poor implementations of the known
methods were used in the previously conducted studies i.e.
[11][12] and the improvements made to those methods i.e.
[13][14]. The implementation (the source code) of the considered
methods was usually non-optimized. It did not use the available
for over the decade fast SIMD (Single Instruction Multiple Data)
vector instructions such as x86 SSE and AVX. Moreover, very
often an implementation did not exploit the computational power
of modern computers as it has been single-threaded only. Besides,
the implementations flaws of methods studied in the literature,
there is very little about the impact of the other techniques that
accelerate motion estimation process, such as image pre-
interpolation technique for calculating motion vectors performed
with ½-pel and ¼-pel accuracy.

For the reasons mentioned above, there is a strong need to
came back to complexity analysis of the known motion estimation
methods. This paper tries to analyse the cause of high complexly
of motion estimation algorithms currently known from the
literature.

The goal of this paper is to measure and compare the
complexity of selected motion estimation algorithms. Because the
authors are interested in showing the results from the practical
(production) point of view, the selected algorithms were first
implemented from scratch with the use of advanced programming
techniques such as SIMD or multithread processing, and then
compared against each other and optimized version known from
reference encoders. All of the work have been done in the context
of HEVC.

II. EFFICIENT IMPLEMENTATION OF THE SELECTED

METHODS

In order to properly meet the assumed objectives of the works,
three different algorithms of motion estimation have been fully
implemented from scratch. These are:

 Brute force ‘Full Search’ algorithm – the method which is a
reference to other algorithms. This algorithm is particularly easy
to optimize.

 ‘Two Dimensional Logarithmic Search’ (hereafter referred to as
‘Log2 search’) – as example of basic “fast” motion estimation
algorithm.

 ‘TZ Search’ – as example of commonly recognized
state-of-the-art algorithm. The ‘TZ Search’ is used as default
algorithm in reference implementations of many video coding

technologies like Scalable and Multiview AVC reference
software (JSVM) [4], HEVC reference software (HM) [5] and
Joint Exploration Test Model Software for beyond HEVC
development (JEM) [6].

Moreover, each of the selected algorithms has been implemented
in three different ways:

 First: using plain C++ programming language. The goal was to
prepare the algorithmically optimized implementation including
efficient memory and resources usage. This implementation
makes the starting point for the two next.

 Second: using SSE instructions. In the C++ program code all
critical functions (distortion metric calculation, reference picture
interpolation, prediction signal calculation, etc.) has been
implemented using SSE intrinsic. In this way data level parallel
processing (SIMD) offered by most x86 CPUs is exploited.

 Third: using AVX instructions. All SSE instructions that were
introduced in the second way of implementation have been
substituted by appropriated AVX instructions, which are
available in modern x86 CPUs.

In the case of implementations in which SSE and AVX vector
instructions were used, some level of acceleration was achieved
due to processing of vectors of data within one processor
instruction. Additionally, all three versions have been
implemented with multithreaded parallel processing in order to
examine the impact of the number of active processor cores on
duration of motion estimation process. In total, six versions of
each of the algorithm have been prepared.

III. METHODOLOGY OF EXPERIMENTS

All the implementations that were presented in Section II have
been prepared as standalone modules that can be easily put in and
out from any encoder implementation. In order to test complexity
of the algorithms from the point of view of their implementation in
the HEVC video encoder, the software has been specially adjusted
in order to take into account the actual conditions in which the
motion estimation process is carried out in the encoder. In
particular, the following conditions have been included:

 Calculations are carried out for a numerous of block sizes that
were defined in the HEVC encoder. These are 64x64, 32x32,
16x16, 8x8, 4x4.

 Starting point for estimation process is calculated on the basis of
prediction of a motion vector. Prediction of a motion vector is
performed as defined in the HEVC standard.

 Full pel, half-pel and quarter-pel accuracy of motion estimation
is considered. In the case of half- and quarter-pel accuracy
interpolation of reference pictures is implemented using HEVC
interpolation algorithm.

 Both uni- and bi-directional inter-frame prediction is considered.

 In the multithreaded parallel implementation there have been
retained limitations of parallel processing of blocks, known from
the HEVC ‘wavefront’ scanning scheme.

The study of the complexity have been made on the basis of
execution time of the authors implementation on the PC platform
equipped with Intel core i7 – 5820K (3.6 GHz – 1 core, 3,4 GHZ –
2 cores, 3.3 GHz – more than 2 cores) and 64 GB of RAM (68
GB/s memory bandwidth).

Base on the collected data, the following research works were
done:

 Comparison of complexity of selected motion estimation
algorithms (‘Full Search’, ‘Log2 Search’, and ‘TZ Search’).

 Analysis of the impact of implementation technique on
complexity of each selected motion estimation algorithms (plain
C++, SSE, or AVX).

 Analysis of the impact of the number of processor threads.

 Comparison of complexity of the algorithm when operating with
various block similarity metrics (like SSD, SAD).

 Motion estimation complexity reduction with help of image pre-
interpolation.

The execution times of the algorithms have been obtained by
performing motion estimation for a set of 16 natural video
sequences recorded in full HD spatial resolution with 25, 30 and
50 fps. The sequences are characterized by diverse motion with
both static and moving background. The partial motion estimation
time results received during the experiments were averaged over
entire set of sequences.

IV. COMPLEXITY OF MOTION ESTIMATION IN THE HEVC-

EXPERIMENTAL RESULTS AND ANALYSIS

A. Impact of implementation technique on the complexity of

motion estimation.

The experiments were performed in order to evaluate
implementation type influence. During the experiments, the TZ
search algorithm has been used, and SSD has been set as a
distortion metric. In the presented work we focus on x86
processors, therefore, set of 3 optimized implementations has been
investigated: plain C++, SSE based and AVX based, with 6
threads working in parallel. The optimized C++ is approximately
10% faster when compared to HM [5] reference software
implementation. The results of experiment are shown on Figure 1.

Figure 1. Comparison of the performance of different implementation types

(plain C++, SSE and AVX) with speedup over optimized plain C++

implementation. All results gathered for TZ search algorithm and 6 working
threads.

The comparison between different implementations clearly
shows that the effort spent on optimization of calculations to
exploit SIMD instructions is worthwhile. The prepared
implementations perform significantly better than the optimized
C++ implementation that does not use SIMD instructions. The
time reduction is about 57% and 66% (2.31x and 2.90x speedup)
for SSE and AVX implementation, respectively.

B. Motion estimation algorithm and its complexity

It is obvious that Full Search (FS) algorithm has the highest
computational complexity measured as a time of motion
estimation. The next experiment was to check the improvement in
time performance offered by fast algorithms (Log2 and TZ search)
for a fully optimized production quality encoder. The performance

ratios between Full Search and fast algorithms may be influenced
by using the best performing (according to the previously
described experiment) AVX instruction set. The test scenario
assumes the use of multithreaded, AVX optimized implementation
and 6 working threads. The results of experiment are shown in
Figure 2.

Figure 2. Comparison of search algorithms complexity (measured as relative

motion estimation time) with speedup over Full search. All results gathered

for SSD distortion metric and 6 working threads.

It is obvious from the results that even for the SIMD optimized
methods there is a significant difference in performance between
full search and fast search algorithms, although the difference is
smaller than for a C++ implementation without SIMD instructions
(TZ search is 84 times faster than full search when not using
SIMD and 72 times faster than full search when both are using
SIMD implementation).

C. The number of processor threads and its impact on the

complexity of motion estimation.

The next experiment concerned the influence of the number of
threads onto the performance of motion estimation. Similarly as
before, the best preforming method, namely, an AVX optimized
TZ search motion estimation, was chosen for the test. The number
of parallel working threads was adjusted in the range from 1 to 12
threads. The results are shown on Figure 3. It is important to note,
that all the tests were performed on a computer with a 6 core
(included HyperThreading mechanism – 12 threads) processor.
The results clearly show that, as long as the number of threads
does not exceed the number of cores multiplied by 2, the
performance increase stays approximately proportional to the
number of threads used (4 threads perform almost 4 times better
than a single thread). The increase is not perfectly proportional,
most probably due to a reduced CPU frequency when using more
than 1 core.

Figure 3. Comparison of different number of working threads on 6 core

(with HyperThreading) CPU with speedup over singlethreaded mode. All
results gatheres for AVX optimized implementation, TZ search algorithm and

SSD distortion metric.

Increasing the number of working threads over the number of
actual cores in the processor does not improve the performance. In
fact, the performance for threads number exceeding the number of

cores leads to a slight (but, nonetheless, noticeable) decrease of the
performance of the coder. Also – the increased number of threads
increases the required transfer from memory, and this one stays the
same, independently of the number of cores used. This forms the
most important bottleneck for a multithreaded coder.

It is therefore advised to set the number of threads to match
twice the number of cores used in the actual machine that performs
the compression.

D. Metric of similarity of image blocks and its influence on

complexity of motion estimation.

Another important factor influencing the complexity of an
encoder is the type of the metric used during motion estimation.
The metric is used to express the similarity between two blocks of
images – from a current and from a reference image. The most
commonly used is SAD – Sum of Absolute Differences, since the
SSD – the Sum of Squared Differences can be, due to the presence
of the squaring phase, perceived as more computationally
expensive. For more precise estimation, like ½- and ¼-pel
accuracy motion estimation, the SATD (Sum of Absolute
Transform Differences) is used [4][5][6]. This is much more
complex, since it involves computation of the transform of a
block. The obtained results are shown in Figure 4. The numbers
represent the performance ratio when compared to the SAD full
pel + SAD fractional pel metric scenario. The lower the bars, the
better the performance. It is clearly shown, that with the use of
AVX instructions, the SAD and SSD metrics are identical in terms
of computational complexity. The same is not true for a simple
C++ implementation without SIMD, where the SSD requires
approximately 53% more time to calculate. What is more, the use
of AVX instructions flattens the performance graph – the most
complex combination of metrics, the SSTD full pel + SSTD
fractional pel, needs 345% of time needed for SAD + SAD, while
for simple C++ implementation it requires 435% of time. Take
into account the fact that AVX performs overall approximately 3
times better for SAD itself (as shown in part IV A) and the
differences become even more appreciable.

Figure 4. Comparison of different distortion metrics for Full pel / Half- and

Quarter-pel block position. Speddup calculated with SAD/SAD as reference.

All results gathered for TZ search algorithm and and 6 working threads.

E. Pre-interpolation of reference pictures and influence of

the technique on complexity of motion estimation.

The motion estimation with ½- and ¼-pel accuracy requires
additional effort caused by performing the reference picture
interpolation. When compared to AVC [1], HEVC interpolation
filters are much more complex and almost double the number of
required operations (memory bandwidth, additions and
multiplications) to calculate interpolated value [15]. Therefore, the
reference picture pre-interpolation and buffering technique
described in [16] has been evaluated. In case of AVC the best

tradeoff between complexity and memory usage was to store ½-
pel interpolated images and perform ¼-pel interpolation (simple
bilinear filter, based on full-pel and ½-pel samples) on-the-fly. In
case of HEVC both ½- and ¼-pel blocks are interpolated based on
full-pel samples. Moreover, 9 of 15 possible sample positions
require two interpolation passes – first horizontal pass and second
vertical pass. Due to the increased complexity of interpolation
stage, the decision was made to evaluate 4 different scenarios: no
pre-interpolation (all calculations are done on-the-fly), pre-
interpolation for ½-pel samples, pre-interpolation for ¼-pel
samples and pre-interpolation for horizontal samples (to avoid the
need of 2 interpolation passes). Only the best performing AVX
scenario is considered here. All result have been shown in Figure
5.

Figure 5. Comparison of pre-interpolation approaches with speedup

calculated over on-the-tly (no pre-interpolation) sheme. All results gathered

for AVX optimized implementation, SSD distortion metric, TZ search
algorithm and and 6 working threads.

The experiments clearly show that buffering of pre-
interpolated reference images allows a substantial speedup in the
HEVC motion estimation stage. The pre-interpolation for all
positions (Quarter-pel) offers best performance (1.56 times faster
than on-the-fly) but requires to buffer additional 15 images (thus,
requiring 16 time more memory). The ½-pel only and horizontal
only pre-interpolation cases require to store only 3 additional
pictures but offer lower speedup. Especially the horizontal pre-
interpolation case is not worth of use when compared to ½-pel pre-
interpolation.

V. CONCLUSIONS AND FINAL REMARKS

The results shown in this paper support clearly the following
conclusions. Firstly, the performance of the encoder can be
significantly increased by speeding up the motion estimation phase
(the most time consuming one) with the use of SIMD (Single
Instruction Multiple Data) instructions. The best performing
implementation obtained in the research was making use of the
AVX instruction set. The expected increase of the performance for
the motion estimation phase for the most frequently used scenario
is 3 times. More importantly, the AVX implementation equalizes
the performance of SSD and SAD metrics used in motion

compensation, so any of them can be selected, without any
performance penalty.

ACKNOWLEDGMENT

Research project was supported by The National Centre for
Research and Development, POLAND, Grant no.
LIDER/023/541/L-4/12/NCBR/2013.

REFERENCES

[1] ISO/IEC 14496-10, Int. Standard “Generic coding of audio-visual
objects – Part 10: Advanced Video Coding” 7th Ed., 2012, also: ITU-T
Rec. H.264, Edition 7.0, 2012.

[2] ISO/IEC 23008-2 (MPEG-H Part 2) / ITU-T Rec. H.265: High Eciency
Video Coding (HEVC), Apr. 2013.

[3] F. Bossen, B. Bross, K. Suhring, D. Flyn, HEVC Complexity and
Implementation Analysis, IEEE Transactions on Circuits and Systems
for Video Technology, vol. 22, no. 12, December 2012.

[4] H. Schwarz , M. Wien and J. Vieron, JSVM software manual, Doc. JVT-
S070, 2006

[5] F. Bossen, D. Flynn, K. Sharman, K. Sühring, “HM Software Manual”,
Joint Collaborative Team on Video Coding of ITU-T SG16 WP3 and
ISO/IEC JTC1/SC29/WG11, Document: JCTVC-Software Manual

[6] Joint Exploration Test Model Software, Joint Video Exploration Team,
of ITU-T SG 16 WP 3 and ISO/IEC JTC 1/SC 29/WG 11,
https://vceg.hhi.fraunhofer.de/svn/svn_HMJEMSoftware/tags/HM-16.6-
JEM-1.0/

[7] J. Jain and A. Jain, "Displacement Measurement and Its Application in
Interframe Image Coding," in IEEE Transactions on Communications,
vol. 29, no. 12, pp. 1799-1808, Dec. 1981.

[8] Ce Zhu, Xiao Lin, and Lap-Pui Chau, Hexagon-based search patten for
fast block motion estimation, IEEE Trans. Circuits Syst. Video Technol.,
12(5) (2002) 349–355.

[9] S. Zhu, K.-K. Ma, A new diamond search algorithm for fast block
matching motion estimation, in: Proceedings of the International
Conference on Information and Communication and Signal Processing,
Singapore, Sept., 1997, pp. 292–296.

[10] Peng Yin, Hye-Yeon Cheong Tourapis, Alexis Michael Tourapis, Jill
Boyce, Fast mode decision and motion estimation for JVT/H.264, in:
Proceedings of the IEEE International Conference on Image Processing
2003, September 2003, vol. 2, pp. 853–856.

[11] A.M. Tourapis, Enhanced predictive zonal search for single and multiple
frame motion estimation, in: SPIE Proceedings of the Visual Comm.
Image Proc., 2002.

[12] Xiu-li T., Univ H., Sheng-kui D., An analysis of TZSearch algorithm in
JMVC, International Conference on Green Circuits and Systems
(ICGCS), Shanghai, 21-23 June 2010, s. 516 – 520.

[13] Xufeng Li, Ronggang Wang, Wenmin Wang, Zhenyu Wang and
Shengfu Dong, "Fast motion estimation methods for HEVC," Broadband
Multimedia Systems and Broadcasting (BMSB), 2014 IEEE
International Symposium on, Beijing, 2014, pp. 1-4.

[14] N. Purnachand, L. N. Alves and A. Navarro, "Fast Motion Estimation
Algorithm for HEVC," Consumer Electronics - Berlin (ICCE-Berlin),
2012 IEEE International Conference on, Berlin, 2012, pp. 34-37.

[15] Hao Lv, Ronggang Wang, Xiaodong Xie, Huizhu Jia and Wen Gao, "A
comparison of fractional-pel interpolation filters in HEVC and
H.264/AVC," Visual Communications and Image Processing (VCIP),
2012 IEEE, San Diego, CA, 2012, pp. 1-6.

[16] T. Grajek, D. Karwowski, A. Łuczak, S. Maćkowiak, M. Domański:
„Architecture of Algorithmically Optimized MPEG-4 AVC/H.264
Video Encoder”, LNCS 7594, pp. 79-86, Springer, Heidelberg (2012)

