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Abstract—In the paper we present the improved VF (Vector 

Fitting) approach for the derivation of a closed form impulse 

response of a diffraction ray that creeps two dimensional (2D) 

dielectric convex obstacle in the form of 2D cylinder. The impulse 

response is obtained by applying a rational function 

approximation of the transfer function of a creeping ray. The 

transfer function is formulated according to UTD (Uniform 

Theory of Diffraction) dedicated for a dielectric convex object. 

Then the inverse Laplace transform is applied. The impulse 

response has a simple form. It is a sum of exponential functions 

which can be in a very effective way applied to simulations of 

UWB signal propagation in channels containing convex obstacles.        

Index Terms—creeping ray, UTD – Uniform Theory of 

Diffraction, UWB – Ultra-Wide-Band, time-domain. 

I.  INTRODUCTION 

UWB technology enables many beneficial features in 
transmission and radar area. In order to take the advantage of 
these features careful UWB system analysis are performed. 
The important component of an UWB system is a propagation 
channel. Due to a very wide range of UWB signal spectrum the 
models (functions) of channel components (obstacles) have to 
be derived for the purpose of proper UWB channel 
investigation. The natural choice of the domain for UWB 
propagation analysis is the time-domain, and the usage of 
impulse responses. These can be found in an empirical way 
with the usage of measurement results or through simulations. 
The paper deals with the latter one for the case of UWB 
channels that comprise obstacles (e.g. people) which can be 
modeled by convex objects (cylinders in 3D case or arcs in 2D 
case). In [1] we presented the way for obtaining the closed 
form novel impulse response of a diffraction ray for a good 
convex conductor case. Although such an object can be a good 
model of a human body in a wireless channel [2] the physical 
parameters of this object do not match those of human body. A 
better choice for modeling a human body is to use a dielectric 
object.  Our aim is to present the procedure for obtaining the 
closed form impulse response of an UTD creeping ray for a 
dielectric object case. The impulse response, which we present, 
has a form that enables effective (fast and accurate) simulations 
of UWB signal diffraction on dielectric convex obstacles. We 
verify the derived impulse response through simulations of an 

UWB pulse diffraction on a convex dielectric 2D cylinder. As 
a reference we use the results obtained by IFFT applied to a 
creeping ray transfer function. The paper is organized as 
follows. In Section 2 we describe the dielectric convex obstacle 
model. Section 3 is devoted to the derivation of the new 
impulse response for a dielectric convex object. In Section 4 
the results of the verification of the new approach are 
presented. We make conclusions in Section 5        

II. DIELECTRIC CONVEX OBSTACLE MODEL 

The scenario of a diffraction ray creeping on a 2D dielectric 
convex object is shown in Fig. 1.   

 

Fig. 1. The UTD ray creeping on a dielectric 2D cylinder. 

The main parameters of the scenario are: θ – angular creeping 
distance, R – radius of an object, s

i
 – the distance from the field 

source point – T to the attachment point – Q’ and s
d
 – the 

distance from the shedding point – Q to the observation point – 
Pd. The cylinder has a permittivity equal to ε2 while the 
surrounding medium permittivity is ε1. The UTD amplitude 
term of transfer function of  the ray is given by [1]:   
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The function F(Xd) is described in e.g. [3]. The pD(ξd) and 
qD(ξd) are the Fock scattering functions for the soft and the 
hard polarization case respectively. The subscript D indicates 
that we use their forms dedicated for dielectric objects. For the 
hard polarization case and ε1 = ε0 this function is given by [4]:   
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where: 
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where εr is a relative permittivity of a dielectric object and c is 
the speed of light.  

III. DERIVATION OF THE NEW IMPULSE RESPONSE 

In [1] we presented the novel closed form impulse response 
of  a creeping ray for the case of a good conducting object. We  
introduced the new variable ξdsub (proportional to ω) in order to 
present (7) as the product of this new variable function and the 
function independent of ω: 
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 Then the VF approximation were performed in the 
established ξdsub limits and the inverse Laplace transformation 
were applied. In order to find an impulse response of a 
creeping ray for a dielectric object case the algorithm from [1] 
have to be improved.  

First, in order to have the whole impulse response in the 
form of the sum of exponential functions, we choose the 
variable for approximation of (2). This variable is Xdsub = Xd 
and is equal β0Ldθ

2
/2, where Ld=s

i
·s

d
/( s

i
+s

d
). Then (2) can be 

rearranged to (8), which we approximate with VF to the form 
in (9). The limits of Xdsub values, for which the approximation is 
performed,  are chosen as the limits of  ξdsub in [1]. The range 
of considered values of radius of a convex object can be set e.g. 

to R ∈ <0.2, 1>m. The lower limit value is the minimum value 
of a cylinder radius that is used in literature to model a human 
body. The upper limit value is reserved for other convex 
obstacles that can occur in an UWB channel. The lower and 
upper limit of θ value can be established to 3·10

-4
 rad and  π rad 

respectively. The first value in chosen in the way that its 
substitution in HA1(ω) instead of 0 does not cause the relative 
deviation from an accurate result above 0.1%. The second 
value of θ parameter can occur when sensor applications are 
taken into consideration (the wave creeps an object and goes 
back towards the transmitter). The range of separation 

coefficient value can be set e.g. to Ld ∈ <0.5, 4>m for the cases 
of smaller and bigger separation of an obstacle and antennas. 
The lower and upper limit values of ω depend on the spectra of 
UWB pulses that are in our concern. We can assume that the 
spectra of pulses will be in the range <0.1, 10>GHz. Then the 

range of pulsation values is ω ∈ <2π·10
8
, 2π·10

10
>rad/s. For the 

above limits of the scenario parameters, the range of the 
approximation domain for (8) in logarithmic scale is 

Xdsub ∈ <10
-8

,10
3
>.                
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 The second component of (1) cannot be rearranged to the 
product of a function dependent only from the variable similar 
to ξdsub and a function independent from ω. Therefore the 
procedure from [1] have to be improved in order to derive the 
new time-domain equivalent of (3).  

First, we rearrange (4) by substituting the new variable 
Msub = M

3
 as fallows.  
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Then using (5) and the results from [5] we can rearrange the 
function that will be approximated to following form.     
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For the sufficient accuracy of the results of calculations of (10) 
the upper limits of the integrals from (11) can be set to 20. We 
see now that (11a) depends on 3 variables. For given values of 
the parameters θ and εr the process of approximation of (12) in 
the Msub domain can be conducted.   
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The limits of Msub values are set as in Xdsub and ξdsub cases. For 
the limits of parameters values presented previously the range 

of the new variable in logarithmic scale is Msub ∈ <10
-1

, 10
2
>. 

Now the aim is to make the values of residues and poles, 
resulting from VF approximations, the functions of  θ and εr. 
We make it by introducing the new variable Zsub, which is the 
function of  θ and εr. The description of the procedure which 
we use for obtaining Zsub is as follows. 
First, we require that the function transforming the pair  θ,  εr to 
Zsub = fD(θ, εr) must be smooth (continuous) when the 
amplitude and phase of (11) is increasing for a given value of 
Msub. In other words the amplitude and phase of (11) must be a 
smooth function of Zsub for a given value of Msub. Numerical 
experiments, that we performed, showed that when the above 
relation is fulfilled each of the residua and poles resulting from 
consecutive applications of VF algorithm (for successive 
values of Zsub), are smooth functions of Zsub. These functions 
can be easily approximated. The functions can be 
approximated by applying the algorithms implemented in 
Mathematica, Mathcad etc. as well as with the usage of VF 
algorithm. We used the latter one by treating Zsub as the time 
argument, applying IFFT, then VF approximation and finally 
retransformation to Zsub domain. During calculations of (11) we 
used Olver expansion [6] to obtain the Hankel function with 
complex order and its derivative values.  
In order to transform a pair of variables θ, εr to the variable Zsub 
we propose to use the functions in (13).     
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Relation [X] in (13) means the biggest integer value not bigger 
than X. There are three extra parameters in (13). The values of 
a, b, c and d are derived experimentally through analysis of the 
results of (11a) calculations for a given values of Msub in a 
considered range of θ and εr values. The main task of b and c 
values adjustment is to make amplitude and phase of (11) a 
smooth function Zsub for a given value of Msub. The values of b 
and c depend on the limits of  θ and εr values which are taken 
into consideration (for which the impulse response must be 
obtained). The small phase function fluctuations in Zsub domain 
can be smoothed in order to improve the performance of VF 
approximation. This smoothing of the phase function of (11a) 
does not cause meaningful error in calculations of UWB pulse 
distortion, what will be shown in the next section. By changing 
the value of parameter a we control the accuracy of  θ x εr → 
Zsub transformation. The bigger accuracy of transformation is, 
the more different values of (13) are. In other words if the 
results of (13) for a given pairs of values of θ, εr are the same, 
the values of (11a) for these pairs of  θ, εr must be in the 
margin of maximum allowed relative deviation of 
approximation (assumed for this part of the impulse response 
derivation, for example 0.1% deviation from the accurate 
frequency domain results.). The exemplary results of the 
amplitude and the phase functions of (11a) with respect to Zsub 
for a given Msub value are shown in Fig. 2 and Fig. 3. 

We used (13) formula with b = 0.1 and c = 2 for 

θ ∈ <3·10
-4

,  π >  and εr ∈ <45.0,  50.0 >.     

 

Fig. 2. Amplitude of (11a): b=0.2, c=2, θ∈<3·10-4,  π >  εr ∈<45.0, 50.0 >.  

 

Fig. 3. Phase of (11a): b=0.2, c=2, θ∈<3·10-4,  π >  εr ∈<45.0, 50.0 >. 

After experimental derivation of a, b, c values we obtain the 
time-domain equivalent of (3) in the following form:  
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The values of K from (14) as well as J from (9) depend on Msub 
and Xdsub limits as well as the maximum allowed VF 
approximation relative deviation. In order to keep the relative 
deviation of approximation under 0.1%  for the range of 
parameters (ω, R, θ, Ld) given in the article, K and J values 
should equal above 10. 
Having (9) and (14), the new impulse response of a creeping 
ray for the case of a dielectric object is easily obtained by 
applying the inverse Laplace transform. The form of the 
impulse response components are given in (15) and (16) (poles 
values have negative sign)   
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IV. NUMERICAL CALCULATION RESULTS 

In this section we present the results of simulations of 
diffraction of exemplary UWB pulse on a dielectric 2D convex 
obstacle. We compare IFFT results incorporating accurate 
frequency-domain formulas [4] with the results obtained 
directly in the time-domain by applying the impulse response, 
derived with the procedure described in the previous section. 
The results are shown in Fig. 4-6. The delay factors were not 
taken into consideration in calculation of the results. The 
maximum value of the incident pulse is normalized to the 
maximum value of the distorted pulse. The time axes are scaled 
in ns. The incident Gauss pulse is calculated by formula (17) 
with tc = 1.5ns and w = 0.7ns.    
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Fig. 4. Incident and distorted UWB Gauss pulse for parameters values: 

R = 0.25m, θ = 0.1, εr = 45, L=1.5.  

 

Fig. 5. Incident and distorted UWB Gauss pulse for parameters values: 

R = 0.25m, θ = 0.5, εr = 50, L=1.5.  

 

Fig. 6. Incident and distorted UWB Gauss pulse for parameters values: 

R = 0.35m, θ = 0.7, εr = 50, L=1.5.  

V. CONCLUSIONS 

The aim of the article was to present the new approach for 

derivation of an impusle response of a dielectric convex 

object. This object can be an effective model of a real convex 

obstacles, e.g. human body, that can occur in an UWB 

channel.  

We verified the new method by performing the simulations 

with the usage of the impulse response derived for the given θ 

and εr limits. We showed that there is a very good agreement 

between convolution and IFFT (reference) results (Fig. 4-6).      

The form of the impulse response is very simple, and can be 

effectively applied to simulations of UWB wave propagation 

on convex obstacles. We can apply direct analytical 

calculations of convolutions or use faster recursive numerical 

procedures of convolutions and take advantage of the fact that 

the components of the impulse response describe low-pass 

filters. Then part of the impulse response components can be 

ommited during calculation of a paricular ray response or can 

be approximated by a delayed delta Dirac function. 
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