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Abstract—In the paper we present a new universal approach 

to stochastic simulation of electromagnetic (EM) wave 
propagation in an ultra-wideband (UWB) channel. We describe 
and verify our new approach for the case of a diffraction on a 

convex obstacle, while the approach can applied to any other EM 
wave propagation  phenomenon. We deal with a circular 
cylinder model of a convex obstacle and uniform theory of 

diffraction (UTD) which can be effectively used in an asymptotic 
prediction of EM propagation on convex obstacles. We take 
advantage of polynomial chaos expansion for statistical analysis. 

We choose orthonormal basis of Jacobi polynomials as it 
corresponds to propagation scenario variables that follow Beta 
stochastic distribution, which is in our opinion the most universal 

one as it can model Gauss distribution as well as an uniform 
distribution in a desired variable range.            

Index Terms—UWB propagation, Jacobi polynomial chaos,  

stochastic simulation. 

I.  INTRODUCTION 

Ultra-wideband technology brought much attention 

worldwide due to its advantages that can be used in 

communications and radar area. Nowadays the usual UWB 

propagation channel concerns indoor scenarios. For the proper 

analysis of UWB propagation it is important to include the 

ultra-wideband interaction of EM wave with an obstacle, e.g. 

convex obstacle. The consequence of this interaction is a signal 

distortion, which can be neglected in narrow-band EM wave 

propagation. It is important to have simulation tools that could 

as accurately as possible predict a field distribution in a given 

propagation channel so as to enable optimized implementation 

of an UWB transmission system. The simulators of EM wave 

propagation base on different models of a propagation 

environment as empirical, statistical, site-specific, theoretical, 

etc. In the paper we deal with a theoretical modeling of EM 

wave indoor propagation. For the presentation of our universal 

polynomial chaos approach we focus in our analysis on a  

convex obstacle which can be static, e.g. rounded pillar or non-

static, e.g. human. The vital advantage of physical models is 

enabling of a detailed insight into the influence of wave 

phenomena and physical parameters of a channel on EM field 

distribution. 

The paper provides a new universal approach to statistical 

analysis of EM field distribution using polynomial chaos 

expansion of a given transfer function corresponding to given 

propagation scenario. We take advantage of the Jacobi 

polynomial orthonormal basis (in the form of series) as it 

corresponds to Beta probability density which allows a lot of 

freedom in description of a stochastic distributions of 

propagation channel parameters. In particular we can 

approximate Gauss as well as an uniform probability density 

with a Beta distribution. In general, expansion coefficients of 

any transfer function have to be calculated using time 

consuming numerical integration [1]. Often full wave analysis 

are required [2, 3]. This analysis need to be performed for each 

change of probability distribution of propagation scenario 

parameters. In our approach we obtain a general formula for 

the expansion coefficients. At the beginning our formula 

requires calculation of expansion coefficients, by means of 

integration, for freely chosen Beta distribution of propagation 

scenario parameters. It allows us then to derive a general 

analytical formula for the expansion coefficients that can be 

used for arbitrary Beta distributions of propagation scenario 

parameters. Consequently we can write that our formula for the 

expansion coefficients is universal. Although the possible 

values of a given scenario parameter must be within a 

predefined limits. For the clarity of description of our universal 

approach and space saving issue the work presented in this 

paper focuses on one, selected wave phenomenon. We chose a 

diffraction phenomenon on a convex obstacle modeled by a 

circular 2D cylinder. The propagation scenario for this case is 

presented in Fig. 1.       

 

 

Fig. 1. 2D scenario of a diffraction (creeping) ray traveling along a circular 

cylinder – a) and cross-section of the cylinder – b). 
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In practical applications it is essential to include stochastic 

properties of physical parameters of propagation channel 

elements. Different numerical methods enable to include a 

stochastic behavior of the simulation problem. Among them 

we can mention Monte Carlo method, moment equations, 

perturbation techniques, polynomial chaos, etc [1]. The main 

goal of these techniques is to provide more reliable simulation 

results dealing with an inaccuracy of a given channel scenario 

parameters, which are treated as stochastic.  

In our analysis we use a polynomial chaos technique, 

which is very effective and provides simulation results in much 

less time than the Monte Carlo method. Polynomial chaos 

expansion has been introduced to computational problems in 

electromagnetic [2]  and recently used in e.g. [3]. To our 

knowledge no study was focused on application of polynomial 

chaos for ultra-wideband propagation. Furthermore, in terms of 

computation complexity, the past results concerning this 

subject do not provide a very useful in our opinion sort of 

generality which would express in defining polynomial chaos 

expansion coefficients by simple analytical formulas which 

would be functions of parameters of stochastic distributions of 

propagation scenario variables.   

In this paper we present the universal approach to 

polynomial chaos expansion using orthonormal Jacobi 

polynomial basis where coefficients of an obtained expansion 

are functions of parameters of a Beta distribution of a given 

stochastic variable of a given propagation scenario. We verify 

the exemplary simulation results obtained with our universal 

expansion coefficients by comparing it with the results of 

Monte Carlo Method.    

The paper is organized as follows. In Section II we 

introduce a derivation of an ultra-wideband universal 

polynomial chaos expansion coefficients using Jacobi 

polynomials. Section III gives some numerical examples that 

verify our new coefficients for the case of a diffraction on a 

convex obstacle modeled by a PEC 2D circular cylinder. We 

conclude the paper in Section IV.                   

II. THE UNIVERSAL POLYNOMIAL CHAOS EXPANSION 

COEFFICIENTS 

Polynomial chaos expansion allows to express a considered 

function of stochastic variables as a spectral expansion for 

these variables [1]. When the stochastic variables follow a Beta 

distribution, with shape parameters α and β,  the strong 

convergence is obtained when orthonormal basis of Jacobi 

polynomials is used. For stochastic variable a ≤ ξ ≤ b, with 

Beta distribution, a Jacobi polynomial expansion of a  transfer 

function T(ωn,ξ) for a given pulsation ωn, can be calculated 

according to the formula: 
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while Pk
α,β

(ξ) is a Jacobi polynomial of kth order. It should be 

noted that Jacobi polynomials are orthogonal in a range of their 

arguments from -1 to 1, while a weighting function has a Beta 

distribution shape [1]. The coefficients of an expansion in (1) 

are calculated by formula: 
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while w(α,β,ξ) is a weighting function which describes a Beta 

distribution: 
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 Index n in (1) and (3) corresponds to the number of a 

frequency samples. In our approach arguments a and b used  

(1) correspond to the range of variable ξ for which we will 

derive our universal expansion coefficients in subsequent parts 

of this Section. This range must be wide enough to comprise 

all possible ξ values which are of our interests. In the scenario 

of a diffraction ray shown in Fig. 1, we can deal with three 

stochastic variables, i.e. ξ=R,  ξ=θ and ξ=Ld= s
i
s

d
(s

i
 + s

d
)

-1
. In 

our numerical examples we will consider ξ=θ whose range of 

possible values are 0≤ θ ≤ π (actual parameter θ depends on the 

actual positions of a source and an observation point).  

 In order to find ultra-wideband expansion coefficients we 

calculate numerically (3) for all the pulsation samples ωn in the 

considered UWB frequency range. In order to approximate a 

transfer function correctly the number of required expansion 

coefficients depends on a range of possible values of ξ as well 

as on a frequency range that are of our interests. The wider are 

these ranges the more coefficients we need.  

The expansion (1) is performed only once for values of ξ 

with Beta distribution defined on interval a ≤ ξ ≤b and 

arbitrarily chosen α and β. Then these results are used to obtain 

our universal expansion coefficients for ξ, with actual Beta 

distribution, in arbitrary interval, let say c ≤ ξ ≤ d. The change 

of an original range of ξ from [a, b] to [c, d] depends on an 

actual position of a source and an observation point (see Fig. 

1).  

The goal is to find the following chaotic polynomial 

expansion:  
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It should be noted that parameters α and β will be arguments 

of (9) and as a consequence their values can be different from 

those used to calculate (3). For the sake of clarity of the 

presentation we changed notation from {α, β} in (3) to {α0, 

β0}. In order to obtain the universal expansion of the transfer 

function T(ωn,ξ) in Jacobi polynomial series, with respect to 

the random parameter  ξ  (c ≤ ξ ≤ d) we eliminate the 

necessity of recalculation of the integral in equation (9). To do 

this we perform three steps procedure. First in (9) we make a 

substitution: 
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It is important to note that infinity upper limit in summation 

occurring in (1) was substituted by K in (11) as it is enough to 

have a finite number of expansion coefficients to approximate 

a given transfer function.  In the second step a Jacobi 

polynomial of kth order is replaced, using a sum of Hermite 

polynomials of maximum order k [4, 5]. As a result a Jacobi 

polynomial of order k and parameters α=α0, β=β0 has a 

following form:   
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 Using expansion coefficients (14a) we can rearrange (11) 

as follows:  
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where dk,n is a combination of (3) and (14b) as follows: 
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where k=0,1,2,...,K. 

In third step in order to simplify (15) we use the following 

identity [6]: 
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After applying (17) in (15) we finally obtain a formula for our 

universal expansion coefficients: 
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The integral in (18) can be calculated analytically. The result 

of an integration depends on a relation of a Jacobi polynomial 

order with a value of k-j. The integral is 0 for k-j<m. When     

k-j=m the integral is: 
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while for k-j>m the integral is given by: 
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where 2F1( . , . , . , . ) is a Gauss hypergeometric function [7].   

In practice, for our diffraction example, the upper limit K in 

summation occurring in (18) varies from several up to thirty. 

The latter corresponds to the case when 0 ≤ θ ≤ π and 

considered frequency range is 1GHz ≤ f ≤ 10GHz 

It should be noted that when more than one variable is 

assumed to be stochastic at one time [1], the analogous 

procedure as the one presented through (1) – (20) hold true. 

 Finally having coefficients in (16) calculated for all 

frequency samples we can apply the vector fitting algorithm 

[8] in order to obtain the frequency dependent expansion 

coefficients in (18) in terms of rational functions [8, 9]. 

Afterwards the approximated transfer function (7) can be 

easily transformed into the time-domain by using the inverse 

Laplace transform. As a result we obtain the spectral expansion 

of an impulse response which is expressed by the sum of 

exponential functions what allows an application an effective 

calculation of a convolution with a given UWB signal.   

 The vector fitting algorithm is applied only once for each 

of the coefficient (16).       

III. SIMULATION EXAMPLES 

In this section we compare our universal polynomial chaos 

approach with standard Monte Carlo one in calculation of 



mean and standard deviation of exemplary T(ωn,ξ) for 

frequency band 1–10 GHz with respect to a stochastic variable 

ξ following exemplary Beta distributions. As we pointed out in 

previous sections we present numerical examples for the case 

of a diffraction (creeping) ray transfer function [10]. The 

transfer function of a creeping ray contains a Fock type 

integral which was calculated by us numerically. We assume a 

stochastic behavior of θ while the radius of the cylinder is 

assumed to be known constant equal 0.25m. We present the 

results in Figs. 2-7. Each figure contains 4 graphs. The solid 

line corresponds to the results obtained with numerical 

calculation of (9). The dotted line relates to the results derived 

using (18) – (20). The square and circle symbol graphs 

correspond to Monte Carlo (MC) simulation results for 

different number of samples used. The graphs of mean and 

standard deviation characteristics are named with µ and σ, 

respectively. For space saving issues only real part of the 

functions is shown. In the first example θ has a Beta 

distribution with α=β=2 in a range from c=0.01 rad to d=0.05 

rad. Simulation results for this case are given in Figs. 2-3. 

  

 
Fig. 2. Mean of a real part of an UTD creeping ray transfer function with 

respect to a frequency when θ has a Beta distribution with c=0.01 rad, d=0.05 

rad, α=β=2. MC results shown with squares and circles correspond to a number 

of samples 1000 and 10000, respectively.   

 

 

 
Fig. 3. Standard deviation of a real part of an UTD creeping ray transfer 

function with respect  to a frequency when θ has a Beta distribution with 

c=0.01 rad, d=0.05 rad, α=β=2. MC results shown with squares and circles 

correspond to a number of samples 1000 and 10000, respectively 
 

 In the second example we change a value of c into 0.4 rad 

and a value of d into 0.6 rad leaving the same values of α and β 

as in the first example. Simulation results for this case are 

given in Figs. 4-5.    

 

 
Fig. 4. Mean of a real part of an UTD creeping ray transfer function with 

respect to a frequency when θ has a Beta distribution with c=0.4 rad, d=0.6 rad, 

α=β=2. MC results shown with squares and circles correspond to a number of 

samples 100 and 1000, respectively. 

 

 
Fig. 5. Standard deviation of a real part of an UTD creeping ray transfer 

function with respect  to a frequency when θ has a Beta distribution with c=0.4 

rad, d=0.6 rad, α=β=2. MC results shown with squares and circles correspond 

to a number of samples 1000 and 10000, respectively. 

 

Finally we modify the shape of a Beta distribution by changing 

a value of α into 3 and a value of β into 7. Corresponding 

simulation results are shown in Figs. 6-7.  

 

 
Fig. 6. Mean of a real part of an UTD creeping ray transfer function with 

respect to a frequency when θ has a Beta distribution with c=0.4 rad, d=0.6 rad, 

α=3, β=7. MC results shown with squares and circles correspond to a number 

of samples 10 and 100, respectively.   

 



 
Fig. 7. Standard deviation of a real part of an UTD creeping ray transfer 

function with respect to a frequency when θ has a Beta distribution with c=0.4 

rad, d=0.6 rad, α=3, β=7. MC results shown with squares and circles 

correspond to a number of samples 10 and 100, respectively. 

 

When analyzing Figs. 2-7 we can see that all the results 

obtained with our universal approach are in a very good 

agreement with the results obtained using numerical 

calculation of (9) (solid lines). This numerical calculation of  

(9) was necessary for each of the examples. In our universal 

approach we do not need to apply any extra numerical 

calculations. The time efficiency of our approach is over 30 

times higher than for the case of numerical calculation of (9) 

and over 500 times higher than for Monte Carlo method 

regarding to e.g. standard deviation results from Fig. 3, Fig. 5 

and Fig. 7. Although we presented the simulation examples for 

the case of one convex obstacle the method can be easily 

adopted to the case of more obstacles in an UWB channel [9]. 

IV. CONCLUSIONS 

We presented in the paper a new universal approach to 

polynomial chaos expansion for simulation of EM wave 

propagation in an UWB channel that focuses on statistical 

analysis of EM field distribution. We took advantage of an 

orthonormal basis of Jacobi polynomials which allows as to 

simulate propagation scenarios whose parameters has a Beta 

stochastic distribution which can model in particular a Gauss 

stochastic distribution and an uniform stochastic distribution. 

Parameters α and β of a Beta distribution allow to include in 

simulations variables with non-symmetric stochastic 

distributions. We presented and examined our new universal 

approach for the case of a diffraction phenomenon on a convex 

obstacle, which is a common element of an indoor propagation 

channel. The generality of our results express in validity of our 

expansion coefficients for wide range of possible values of a 

given propagation scenario variables without the need of 

performing any numerical calculations. The coefficient are the 

functions of all parameters of Beta distribution that is followed 

by a stochastic variable ξ. The coefficients (3) that are used to 

form the universal coefficients (18) need to be calculated only 

once for each frequency sample of a considered UWB 

spectrum and then can be tabulated. Application of vector 

fitting algorithm for approximation of (16) in a frequency-

domain allows to obtain a very simple form (sum of 

exponential functions) of an impulse response corresponding 

to a given propagation phenomenon [9] what allows an 

application a very effective calculation of a convolution with a 

given UWB signal.  

Our new approach enables to obtain stochastic distribution 

of a given transfer function in a very short time comparing to 

application of a Monte Carlo method while it allows flexible 

settings of parameters of stochastic variables in a wide range. 

The results obtained using our universal approach are very 

accurate what is presented for the case of exemplary stochastic 

variable distributions in Figs. 2-7.     
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